Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ophthalmology: Catching the silent thief of sight

12.09.2013
An automated method could prevent blindness by detecting glaucoma in its early stages

A team of researchers led by Jun Cheng of the A*STAR Institute for Infocomm Research, Singapore, has developed a novel automated technology that screens for glaucoma more accurately and quickly than existing methods1.

Glaucoma is a chronic, progressive eye disease that damages the optic nerve. It is the second leading cause of blindness worldwide, and will affect an estimated 80 million people by the year 2020. Progression of the disease can be slowed when treated early; however, glaucoma symptoms may go unnoticed until the advanced stages, by which time treatment is too late.

Currently, ophthalmologists use three methods to detect glaucoma. One is the assessment of increased pressure inside the eyeball. This method is not sensitive enough to detect glaucoma early and is not specific to the disease, which sometimes occurs without increased pressure. Another is the assessment of abnormal vision. This method requires specialized equipment, rendering it unsuitable for widespread screening.

The third method — assessment of the damage to the head of the optic nerve — is the most reliable but requires a trained professional and is time-consuming, expensive and highly subjective.

Glaucoma is characterized by a vertical elongation of the optic cup, a white area at the center of the optic nerve head, or optic disc. This elongation alters the cup-to-disc ratio (CDR) but does not normally affect vision. The computerized technique developed by Cheng and his colleagues measures the CDR from two-dimensional images of the back of the eye (see image).

The technique uses an algorithm that divides the images into hundreds of segments called superpixels and classifies each segment as part of either the optic cup or the optic disc. The cup and disc measurements can then be used to compute the CDR.

From 2326 test images, the researchers found that their automated technique is more accurate than the other glaucoma screening methods. Their technique takes around 10 seconds per image on a standard personal computer. This is comparable to other computerized methods, but automation makes it less laborious.

“The technique is ready to be used widely and can be used for screening so that glaucoma can be detected early,” says Cheng. Early detection allows ophthalmologists to treat the patients, slowing disease progression.

Cheng also identifies potential improvements to the technique. “For example, we can include more data in the training to improve the accuracy.” He says that the method can also be enhanced by integrating other factors, such as optic cup depth, into the analyses.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

References

Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K. et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging 32, 1019–1032 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6739
http://www.researchsea.com

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>