Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ophthalmology: Catching the silent thief of sight

An automated method could prevent blindness by detecting glaucoma in its early stages

A team of researchers led by Jun Cheng of the A*STAR Institute for Infocomm Research, Singapore, has developed a novel automated technology that screens for glaucoma more accurately and quickly than existing methods1.

Glaucoma is a chronic, progressive eye disease that damages the optic nerve. It is the second leading cause of blindness worldwide, and will affect an estimated 80 million people by the year 2020. Progression of the disease can be slowed when treated early; however, glaucoma symptoms may go unnoticed until the advanced stages, by which time treatment is too late.

Currently, ophthalmologists use three methods to detect glaucoma. One is the assessment of increased pressure inside the eyeball. This method is not sensitive enough to detect glaucoma early and is not specific to the disease, which sometimes occurs without increased pressure. Another is the assessment of abnormal vision. This method requires specialized equipment, rendering it unsuitable for widespread screening.

The third method — assessment of the damage to the head of the optic nerve — is the most reliable but requires a trained professional and is time-consuming, expensive and highly subjective.

Glaucoma is characterized by a vertical elongation of the optic cup, a white area at the center of the optic nerve head, or optic disc. This elongation alters the cup-to-disc ratio (CDR) but does not normally affect vision. The computerized technique developed by Cheng and his colleagues measures the CDR from two-dimensional images of the back of the eye (see image).

The technique uses an algorithm that divides the images into hundreds of segments called superpixels and classifies each segment as part of either the optic cup or the optic disc. The cup and disc measurements can then be used to compute the CDR.

From 2326 test images, the researchers found that their automated technique is more accurate than the other glaucoma screening methods. Their technique takes around 10 seconds per image on a standard personal computer. This is comparable to other computerized methods, but automation makes it less laborious.

“The technique is ready to be used widely and can be used for screening so that glaucoma can be detected early,” says Cheng. Early detection allows ophthalmologists to treat the patients, slowing disease progression.

Cheng also identifies potential improvements to the technique. “For example, we can include more data in the training to improve the accuracy.” He says that the method can also be enhanced by integrating other factors, such as optic cup depth, into the analyses.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research


Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K. et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging 32, 1019–1032 (2013).

A*STAR Research | Research asia research news
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>