Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Omega-3s from fish vs. fish oil pills better at maintaining blood pressure in mouse model

Omega-3 fatty acids found in oily fish may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems.

But how the health effects of one such fatty acid -- docosahexaenoic acid (DHA) -- works remains unclear, in part because its molecular signaling pathways are only now being understood.

Graphic representation of a potassium transmembrane ion channel.

Credit: Toshinori Hoshi, Ph.D., Perelman School of Medicine, University of Pennsylvania

Toshinori Hoshi, PhD, professor of Physiology, at the Perelman School of Medicine, University of Pennsylvania, and colleagues showed, in two papers out this week in the Proceedings of the National Academy of Sciences, how fish oils help lower blood pressure via vasodilation at ion channels. In vascular smooth muscle cells, such as those that line blood vessels, ion channels that span the outer membrane of a cell to let such ions as sodium, calcium, and potassium in and out, are critical to maintaining proper vessel pressure.

Omega-3 fatty acids bind directly to a specific group of channels that allow potassium ions to move out, which affects how much voltage is required to open the channel. If omega-3 fatty acids bind to the channel, only a small amount of voltage is needed. This is good for a cell because an open potassium channel means the cell is at rest, and when smooth blood muscle cells are relaxed, blood pressure is at a good level. However, when vessels constrict, blood pressure increases.

The researchers found that DHA rapidly and reversibly activates these channels by increasing currents by up to 20 fold. DHA lowers blood pressure in anesthetized wild type mice but not in mice genetically engineered without a specific ion channel subunit.

In comparison, the team found that a dietary supplement, DHA ethyl ester, found in most fish oil pills fails to activate the same channels, and even antagonizes the positive effect of DHA from natural sources, on the cells. The DHA ethyl ester seems to compete with the natural form of DHA for binding sites on the ion channel.

The team concluded that these channels have receptors for long-chain omega-3 fatty acids, and that DHA -- unlike its ethyl ester cousin -- activate the channels and lower blood pressure.

The findings have practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for critically ill patients who may receive omega-3–enriched formulas as part of their nutrition.

Coauthor Michael Bauer from Jena University Hospital in Germany, who studies sepsis in a clinical setting, says the findings may encourage physicians to have a closer look at the specific formulations given to sepsis patients as they may contain either the free omega-3 acid or the ester.

The findings also underscore the importance of obtaining omega-3 fatty acids from natural food sources such as oily fish.

The study was supported, in part, by the National Institutes of Health (R01GM057654), the German Research Foundation, and Natural Science Foundation of China.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>