Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older mice fed wolfberries show reduced risk for flu virus with vaccine

12.12.2013
In a study of older mice, wolfberries appear to interact with the influenza vaccine to offer additional protection against the flu virus.

The research, led by scientists at the Jean Mayer USDA Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University, suggests the wolfberry may increase the activity of dendritic cells, which play an important role in the ability of the immune system to defend against viral infections. The results were published online ahead of print today by the Journal of Nutrition.

Older mice, with immune systems weakened by age, were placed on diets that included a small amount of a milk preparation of wolfberry fruit, also known as goji berries. Over a period of several weeks, they received two flu vaccines before being infected with the flu virus and monitored for signs of symptoms. The researchers then tested for specific influenza antibodies as well as the clinical symptoms of the disease such as weight loss among the mice.

"We observed higher antibody response and better protection against flu as indicated by less weight loss in the older mice that consumed wolfberries," said senior author Simin Nikbin Meydani, D.V.M., Ph.D., director of the USDA HNRCA at Tufts University and director of the Nutritional Immunology Laboratory at the USDA HNRCA. "While previous studies have shown that wolfberries bolster immune response in mice, our results introduce their potential to reduce the age-related risk and severity of the flu virus in the presence of the vaccine."

Meydani and colleagues isolated dendritic cells, which are known to activate infection-fighting T-cells. The cells were treated with a wolfberry concentrate and incubated for one week. During that time, the researchers observed that the maturity and inflammatory activity of the dendritic cells had increased, which suggests an improved immune response.

"Although we have taken a step toward understanding the mechanism behind the wolfberry's interaction with the flu vaccine, it remains unclear which components of wolfberries may be responsible for the effects observed in this study," said co-corresponding author Dayong Wu, M.D., Ph.D., a senior scientist in the Nutritional Immunology Laboratory and an associate professor at the Friedman School of Nutrition Science and Policy at Tufts University.

"Wolfberries are rich in complex carbohydrates known as polysaccharides, as well as vitamins, carotenoids and flavonoids. Future studies in rodent models would be necessary to understand which components appear to be stimulating the dendritic cells."

Further research is also needed to determine whether wolfberries could have a similar effect in older humans who receive the flu vaccine. "People's immune systems inevitably weaken with age, making them less responsive to the vaccine and more susceptible to the flu and its potentially serious complications," said Meydani, who is also a professor at the Friedman School of Nutrition Science and Policy and a member of the immunology program faculty at the Sackler School of Graduate Biomedical Sciences, both at Tufts University.

"While flu vaccination is recommended for older people, the vaccine is only 40% effective in protecting older adults against flu infection, which is much lower than that afforded to younger people. For those reasons, it is important to investigate complimentary approaches that may enhance the effectiveness of vaccination."

This research was funded under an agreement with the USDA Agricultural Research Service, contract #58-1950-0-014.

The milk preparation of wolfberry fruit was provided by Nestec S.A. Although Drs. Meydani and Wu have received funding from Nestec S.A., it was not used to support this research.

Additional authors of this study are Donald E. Smith, Ph.D., scientist and manager in the Comparative Biology Unit at the USDA HNRCA and Xiogang Du, Ph.D., a former postdoctoral associate; Junpeng Wang, D.V.M., Ph.D., a scientist; Xinli Niu, M.S., a former research assistant, all in the Nutritional Immunology Laboratory at the USDA HNRCA.

Du, X; Wang, J; Niu, X; Smith, D; Wu, D; and Meydani, SN. "Dietary wolfberry supplementation enhances protective effect of flu vaccine against influenza challenge in aged mice." Journal of Nutrition. doi:

The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University is the only independent school of nutrition in the United States. The school's eight degree programs, which focus on questions relating to famine, hunger, poverty, and communications, are renowned for the application of scientific research to national and international policy. For three decades, the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University has studied the relationship between good nutrition and good health in aging populations. Tufts research scientists work with federal agencies to establish the USDA Dietary Guidelines, the Dietary Reference Intakes, and other significant public policies.

Andrea Grossman | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>