Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older adult clumsiness linked to brain changes

05.06.2013
Seniors use less effective reference frames to visualize nearby objects

For many older adults, the aging process seems to go hand-in-hand with an annoying increase in clumsiness — difficulties dialing a phone, fumbling with keys in a lock or knocking over the occasional wine glass while reaching for a salt shaker.

While it’s easy to see these failings as a normal consequence of age-related breakdowns in agility, vision and other physical abilities, new research from Washington University in St. Louis suggests that some of these day-to-day reaching-and-grasping difficulties may be be caused by changes in the mental frame of reference that older adults use to visualize nearby objects.

“Reference frames help determine what in our environment we will pay attention to and they can affect how we interact with objects, such as controls for a car or dishes on a table,” said study co-author Richard Abrams, PhD, professor of psychology in Arts & Sciences.

“Our study shows that in addition to physical and perceptual changes, difficulties in interaction may also be caused by changes in how older adults mentally represent the objects near them.”

The study, published in the journal Psychological Science, is co-authored by two recent graduates of the psychology graduate program at Washington University. The lead author, Emily K. Bloesch, PhD, is now a postdoctoral teaching associate at Central Michigan University. The third co-author, Christopher C. Davoli, PhD, is a postdoctoral psychology researcher at the University of Notre Dame.

When tested on a series of simple tasks involving hand movements, young people in this study adopted an attentional reference frame centered on the hand, while older study participants adopted a reference frame centered on the body.

Young adults, the researchers explain, have been shown to use an “action-centered” reference frame that is sensitive to the movements they are making. So, when young people move their hands to pick up an object, they remain aware of and sensitive to potential obstacles along the movement path. Older adults, on the other hand, tend to devote more attention to objects that are closer to their bodies — whether they are on the action path or not.

“We showed in our paper that older adults do not use an “action centered” reference frame. Instead they use a “body centered” one,” Bloesch said. “As a result, they might be less able to effectively adjust their reaching movements to avoid obstacles — and that’s why they might knock over the wine glass after reaching for the salt shaker.”

These findings mesh well with other research that has documented age-related physical declines in several areas of the brain that are responsible for hand-eye coordination. Older adults exhibit volumetric declines in the parietal cortex and intraparietal sulcus, as well as white-matter loss in the parietal lobe and precuneus. These declines may make the use of an action-centered reference frame difficult or impossible.

“These three areas are highly involved in visually guided hand actions like reaching and grasping and in creating attentional reference frames that are used to guide such actions. These neurological changes in older adults suggest that their representations of the space around them may be compromised relative to those of young adults and that, consequently, young and older adults might encode and attend to near-body space in fundamentally different ways,” the study finds.

As the U.S. population ages, research on these issues is becoming increasingly important. An estimated 60-to-70 percent of the elderly population reports difficulty with activities of daily living, such as eating and bathing and many show deficiencies in performing goal-directed hand movements. Knowing more about these aging-related changes in spatial representation, the researchers suggest, may eventually inspire options for skills training and other therapies to help seniors compensate for the cognitive declines that influence hand-eye coordination

This research, supported by Grant AG0030 from the National Institute on Aging.

Gerry Everding | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>