Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older adult clumsiness linked to brain changes

05.06.2013
Seniors use less effective reference frames to visualize nearby objects

For many older adults, the aging process seems to go hand-in-hand with an annoying increase in clumsiness — difficulties dialing a phone, fumbling with keys in a lock or knocking over the occasional wine glass while reaching for a salt shaker.

While it’s easy to see these failings as a normal consequence of age-related breakdowns in agility, vision and other physical abilities, new research from Washington University in St. Louis suggests that some of these day-to-day reaching-and-grasping difficulties may be be caused by changes in the mental frame of reference that older adults use to visualize nearby objects.

“Reference frames help determine what in our environment we will pay attention to and they can affect how we interact with objects, such as controls for a car or dishes on a table,” said study co-author Richard Abrams, PhD, professor of psychology in Arts & Sciences.

“Our study shows that in addition to physical and perceptual changes, difficulties in interaction may also be caused by changes in how older adults mentally represent the objects near them.”

The study, published in the journal Psychological Science, is co-authored by two recent graduates of the psychology graduate program at Washington University. The lead author, Emily K. Bloesch, PhD, is now a postdoctoral teaching associate at Central Michigan University. The third co-author, Christopher C. Davoli, PhD, is a postdoctoral psychology researcher at the University of Notre Dame.

When tested on a series of simple tasks involving hand movements, young people in this study adopted an attentional reference frame centered on the hand, while older study participants adopted a reference frame centered on the body.

Young adults, the researchers explain, have been shown to use an “action-centered” reference frame that is sensitive to the movements they are making. So, when young people move their hands to pick up an object, they remain aware of and sensitive to potential obstacles along the movement path. Older adults, on the other hand, tend to devote more attention to objects that are closer to their bodies — whether they are on the action path or not.

“We showed in our paper that older adults do not use an “action centered” reference frame. Instead they use a “body centered” one,” Bloesch said. “As a result, they might be less able to effectively adjust their reaching movements to avoid obstacles — and that’s why they might knock over the wine glass after reaching for the salt shaker.”

These findings mesh well with other research that has documented age-related physical declines in several areas of the brain that are responsible for hand-eye coordination. Older adults exhibit volumetric declines in the parietal cortex and intraparietal sulcus, as well as white-matter loss in the parietal lobe and precuneus. These declines may make the use of an action-centered reference frame difficult or impossible.

“These three areas are highly involved in visually guided hand actions like reaching and grasping and in creating attentional reference frames that are used to guide such actions. These neurological changes in older adults suggest that their representations of the space around them may be compromised relative to those of young adults and that, consequently, young and older adults might encode and attend to near-body space in fundamentally different ways,” the study finds.

As the U.S. population ages, research on these issues is becoming increasingly important. An estimated 60-to-70 percent of the elderly population reports difficulty with activities of daily living, such as eating and bathing and many show deficiencies in performing goal-directed hand movements. Knowing more about these aging-related changes in spatial representation, the researchers suggest, may eventually inspire options for skills training and other therapies to help seniors compensate for the cognitive declines that influence hand-eye coordination

This research, supported by Grant AG0030 from the National Institute on Aging.

Gerry Everding | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>