Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU scientists advance understanding of brain receptor; may help fight neurological disorders

For several years, the pharmaceutical industry has tried to develop drugs that target a specific neurotransmitter receptor in the brain, the NMDA receptor.

This receptor is present on almost every neuron in the human brain and is involved in learning and memory. NMDA receptors also have been implicated in several neurological and psychiatric conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia and depression.

But drug companies have had little success developing clinically effective drugs that target this receptor.

Now, researchers at Oregon Health & Science University's Vollum Institute believe they may understand why. And what they've discovered may help in the development of new therapies for these conditions.

In a paper published in the current issue of the Journal of Neuroscience, OHSU scientists describe their work on NMDA receptors. There are various types of NMDA receptors, resulting from differences in the protein components that make up the receptor. These differences in the protein components produce receptors with varying properties.

As drug companies have worked to develop compounds that manipulate the activity of these receptors, the focus of much of this drug discovery effort has been on a specific NMDA receptor subtype. In their Journal of Neuroscience paper, the OHSU scientists describe their discovery — that the specific receptor subtype that drug companies have seen as a target is an almost nonexistent contributor of NMDA receptor action.

What does exist, the OHSU scientists found, was a different kind of NMDA receptor subtype — one containing two specific protein components, called GluN2A and GluN2B. NMDA receptors containing these two components were not thought to be very common. The OHSU study found that not only was this NMDA receptor subtype more common than previously believed, it was the most common subtype at synapses. And it was far more common than the receptor subtype that has been the target of drug development efforts.

"What our paper shows is that one reason no drugs have worked well to this point may be because that particular NMDA receptor subtype isn't there in high quantities. The target they've been looking for isn't the target that's there," said Ken Tovar, Ph.D., a senior postdoctoral fellow at the Vollum Institute. Tovar's co-authors on the paper were Gary Westbrook, M.D., senior scientist and co-director of the Vollum Institute, and Matthew McGinley, Ph.D., a former graduate student in the Westbrook laboratory.

Tovar said these findings could provide a new target for drug development.

"If you know what's there, then you know what to go after — you just have to figure out how to do it," Tovar said.

The OHSU study also provides clues into how the function of this most common NMDA receptor subtype might be manipulated. Highly specific drugs interact with either GluN2A or GluN2B. Tovar and colleagues demonstrated that when GluN2A and GluN2B coexist in the same receptor, molecules that targeted GluN2A change the behavior of the receptor in ways that could be clinically beneficial.

"NMDA receptors have been implicated in a diverse list of neurological and psychiatric conditions. Thus, the more we know about how to modulate the behavior of the receptors that are there — at synapses — the greater chance we have of finding drugs to treat these conditions," Tovar said.

"From the perspective of drug development, knowing the nature of your target is one way to keep drug development costs down," said Tovar. "Spending resources investigating a target that turns out to be unimportant means those costs get passed on to the drugs that are effective."

The study was funded by the National Institutes of Health, grants NS 26494 and MH 46613.

About the OHSU Vollum Institute

The Vollum Institute is a privately endowed research institute at OHSU and is dedicated to basic research that will lead to new treatments for neurological and psychiatric diseases. Vollum scientists have transformed the field of neuroscience and, in particular, have been pioneers in the study of cellular signaling, neuronal development, gene regulation and the neurobiology of disease.
About OHSU

Oregon Health & Science University is the state's only public academic health and research university. As one of Oregon's largest employers with more than 14,000 employees, OHSU's size contributes to its ability to provide many services and community support not found anywhere else in the state. OHSU serves patients from every corner of Oregon and is a conduit for learning for more than 4,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state.

Todd Murphy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>