Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU research reveals possible method for boosting the immune system to protect infants against HIV

04.10.2010
Researchers at Oregon Health &Science University may have uncovered a new weapon for combating HIV as it is passed from mother to newborn child. The research, which was led by researchers at OHSU's Oregon National Primate Research Center, will be published in the October 3rd online edition of the journal Nature Medicine.

"Mother-to-infant transmission of HIV is a tremendous worldwide problem, especially in several African nations," said Nancy Haigwood, Ph.D., researcher and director of the Oregon National Primate Research Center at OHSU.

According to the latest data from the World Health Organization, 33.4 million people were infected by the virus in 2008. About 67 percent of the world's infections are in African countries. In addition, 91 percent of the world's childhood infections are in Africa.

Haigwood, her colleagues at OHSU, along with researchers at the University of Washington are investigating strategies for preventing or countering HIV infections in babies born to women with HIV. Their strategy: to educate part of the baby's immune system within the first few hours of birth to better fight of the disease.

"HIV attacks and kills T-cells, the white blood cells that play an important role in the immune system because they have the ability to identify and destroy disease invaders. By attacking the body's natural defenses, the disease progresses, causes AIDS and eventually death," explained Haigwood. "Therefore, many therapies focus on protecting T-cells."

However, Haigwood and her colleagues took a different approach. They focused on another component of the immune system, which was initially thought to play a lesser role in the body's defense against HIV. Babies born to HIV-infected mothers have HIV-specific neutralizing antibodies at the time of birth that are "passively" acquired across the placenta. They wanted to determine whether boosted neutralizing antibody levels would weaken the disease's ability to overtake the body's defenses.

To investigate this possible treatment, the researchers studied three small groups of infant monkeys. The first group was given additional antibodies derived from healthy mothers. The second group was given antibodies matched to simian/human immunodeficiency virus (SHIV). SHIV is a hybrid virus used in research to ensure that results translate between species. The third group of animals was provided with HIV antibodies similar to, but not exactly matching, the strain of infection they would receive. The three groups were then exposed to SHIV and their immune systems were subsequently monitored.

Unlike the other two groups, the "HIV-matched" animals were better protected from the virus. They developed higher levels of neutralizing antibodies and, had lower levels of SHIV in their blood plasma than the comparison groups six months post-infection. In addition they maintained their CD4+ T cells ¨C another component of the immune system.

The study also provided insights into the level of antibodies needed to impact disease progression. For this study, the antibody levels were relatively low dosed. Previously, antibodies were shown to block infection in animal models. This study demonstrated, for the first time, that very low levels of antibodies þu too low to block infection þu can influence disease progression in this setting and stimulate an immune response that contributes to viral control in the absence of drug treatment.

In future studies, the researchers hope to learn whether higher doses of antibodies translate into greater protection for the infants.

"This research demonstrates that boosting the body's HIV antibodies þuby a time-honored method of passive transfer that would use new HIV-specific human monoclonal antibodies þu may be a strategy for reducing infection levels and protecting CD4+ T cells in newborn children," said Haigwood. "While the treatment would not likely prevent infection, it could limit the levels of infection in children which would greatly reduce suffering and extend lives."

The National Institutes of Health and the Elizabeth Glaser Pediatric AIDS Foundation funded this research.

About ONPRC

The ONPRC is a registered research institution, inspected regularly by the United States Department of Agriculture. It operates in compliance with the Animal Welfare Act and has an assurance of regulatory compliance on file with the National Institutes of Health. The ONPRC also participates in the voluntary accreditation program overseen by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

About OHSU

Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer and the fourth largest in Oregon (excluding government), OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves more than 184,000 patients, and is a conduit for learning for more than 3,900 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>