Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Off the shelf, on the skin: Stick-on electronic patches for health monitoring

04.04.2014

Wearing a fitness tracker on your wrist or clipped to your belt is so 2013.

Engineers at the University of Illinois at Urbana-Champaign and Northwestern University have demonstrated thin, soft stick-on patches that stretch and move with the skin and incorporate commercial, off-the-shelf chip-based electronics for sophisticated wireless health monitoring.


Photo by

John A. Rogers

Thin, soft stick-on patches that stretch and move with the skin incorporate commercial, off-the-shelf chip-based electronics for sophisticated wireless health monitoring. The new device was developed by John A. Rogers of Illinois and Yonggang Huang of Northwestern University.

VIEW VIDEO demonstrating flexibility of the new device

The patches stick to the skin like a temporary tattoo and incorporate a unique microfluidic construction with wires folded like origami to allow the patch to bend and flex without being constrained by the rigid electronics components. The patches could be used for everyday health tracking – wirelessly sending updates to your cellphone or computer – and could revolutionize clinical monitoring such as EKG and EEG testing – no bulky wires, pads or tape needed.

... more about:
»EEG »EKG »Engineering »activity »microfluidic »microfluidics »skin »tiny

“We designed this device to monitor human health 24/7, but without interfering with a person’s daily activity,” said Yonggang Huang, the Northwestern University professor who co-led the work with Illinois professor John A. Rogers. “It is as soft as human skin and can move with your body, but at the same time it has many different monitoring functions. What is very important about this device is it is wirelessly powered and can send high-quality data about the human body to a computer, in real time.”

The researchers did a side-by-side comparison with traditional EKG and EEG monitors and found the wireless patch performed equally to conventional sensors, while being significantly more comfortable for patients. Such a distinction is crucial for long-term monitoring, situations such as stress tests or sleep studies when the outcome depends on the patient’s ability to move and behave naturally, or for patients with fragile skin such as premature newborns.

The team will publish its design in the April 4 issue of Science. See video.

Rogers’ group at Illinois previously demonstrated skin electronics made of very tiny, ultrathin, specially designed and printed components. While those also offer high-performance monitoring, the ability to incorporate readily available chip-based components provides many important, complementary capabilities in engineering design, at very low cost.

“Our original epidermal devices exploited specialized device geometries – super thin, structured in certain ways,” Rogers said. “But chip-scale devices, batteries, capacitors and other components must be re-formulated for these platforms. There’s a lot of value in complementing this specialized strategy with our new concepts in microfluidics and origami interconnects to enable compatibility with commercial off-the-shelf parts for accelerated development, reduced costs and expanded options in device types.”

The multi-university team turned to soft microfluidic designs to address the challenge of integrating relatively big, bulky chips with the soft, elastic base of the patch. The patch is constructed of a thin elastic envelope filled with fluid. The chip components are suspended on tiny raised support points, bonding them to the underlying patch but allowing the patch to stretch and move.

One of the biggest engineering feats of the patch is the design of the tiny, squiggly wires connecting the electronics components – radios, power inductors, sensors and more. The serpentine-shaped wires are folded like origami, so that no matter which way the patch bends, twists or stretches, the wires can unfold in any direction to accommodate the motion. Since the wires stretch, the chips don’t have to.

A downloadable image and video gallery is available (password: microfluidics).

Skin-mounted devices could give those interested in fitness tracking a more complete and accurate picture of their activity level.

“When you measure motion on a wristwatch type device, your body is not very accurately or reliably coupled to the device,” said Rogers, a Swanlund Professor of Materials Science and Engineering at the U. of I. “Relative motion causes a lot of background noise. If you have these skin-mounted devices and an ability to locate them on multiple parts of the body, you can get a much deeper and richer set of information than would be possible with devices that are not well coupled with the skin. And that’s just the beginning of the rich range of accurate measurements relevant to physiological health that are possible when you are softly and intimately integrated onto the skin.”

The researchers hope that their sophisticated, integrated sensing systems could not only monitor health but also could help identify problems before the patient may be aware. For example, according to Rogers, data analysis could detect motions associated with Parkinson’s disease at its onset.

“The application of stretchable electronics to medicine has a lot of potential,” Huang said. “If we can continuously monitor our health with a comfortable, small device that attaches to our skin, it could be possible to catch health conditions before experiencing pain, discomfort and illness.”

The National Security Science and Engineering Faculty Fellowship of Energy, the Korean Foundation for International Cooperation of Science and Technology, and the Department of Energy supported this work.

Rogers directs the Frederick Seitz Materials Research Laboratory at Illinois and also is affiliated with the Beckman Institute for Advanced Science and Technology and the departments of chemistry, of mechanical science and engineering, of bioengineering and of electrical and computer engineering.

Huang is the Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern’s McCormick School of Engineering and Applied Science.

Liz Ahlberg | University of Illinois at Urbana-Champaign
Further information:
http://news.illinois.edu/news/14/0403microfluidics_JohnRogers.html

Further reports about: EEG EKG Engineering activity microfluidic microfluidics skin tiny

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>