Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odor receptors discovered in lungs

03.01.2014
They’re just like those in your nose, but instead of conjuring up a cup of coffee, they might make you cough

Your nose is not the only organ in your body that can sense cigarette smoke wafting through the air. Scientists at Washington University in St. Louis and the University of Iowa have shown that your lungs have odor receptors as well.


Ben-Shahar
“They’re beautiful cells,” said Ben-Shahar, of the pulmonary neuroendocrine cells he has been studying in lung tissues. The flask-like cells that are full of serotonin (stained green here) and other chemicals extend processes up through the epithelial cells (purple) lining the airways to monitor the chemical makeup of each breath. The top part of the image is a plan view of the airway lining and the bottom part is a section through the lining.

Unlike the receptors in your nose, which are located in the membranes of nerve cells, the ones in your lungs are in the membranes of neuroendocrine cells. Instead of sending nerve impulses to your brain that allow it to “perceive” the acrid smell of a burning cigarette somewhere in the vicinity, they trigger the flask-shaped neuroendocrine cells to dump hormones that make your airways constrict.

The newly discovered class of cells expressing olfactory receptors in human airways, called pulmonary neuroendocrine cells, or PNECs, were found by a team led by Yehuda Ben-Shahar, PhD, assistant professor of biology, in Arts & Sciences, and of medicine at Washington University in St. Louis, and including colleagues Steven L. Brody, MD, and Michael J. Holtzman, MD, of the Washington University School of Medicine, and Michel J. Welsh, MD, of the University of Iowa Carver College of Medicine.

“We forget,” said Ben-Shahar, “that our body plan is a tube within a tube, so our lungs and our gut are open to the external environment. Although they’re inside us, they’re actually part of our external layer. So they constantly suffer environmental insults,” he said, “and it makes sense that we evolved mechanisms to protect ourselves.”

In other words, the PNECs, described in the March issue of the American Journal of Respiratory Cell and Molecular Biology, are sentinels, guards whose job it is to exclude irritating or toxic chemicals.

The cells might be responsible for the chemical hypersensitivity that characterizes respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. Patients with these diseases are told to avoid traffic fumes, pungent odors, perfumes and similar irritants, which can trigger airway constriction and breathing difficulties.

The odor receptors on the cells might be a therapeutic target, Ben-Shahar suggests. By blocking them, it might be possible to prevent some attacks, allowing people to cut down on the use of steroids or bronchodilators.

Every breath you take
When a mammal inhales, volatile chemicals flow over two patches of specialized epithelial tissue high up in the nasal passages. These patches are rich in nerve cells with specialized odorant-binding molecules embedded in their membranes.

If a chemical docks on one of these receptors, the neuron fires, sending impulses along the olfactory nerve to the olfactory bulb in the brain, where the signal is integrated with those from hundreds of other similar cells to conjure the scent of old leather or dried lavender.

Aware that airway diseases are characterized by hypersensitivity to volatile stimuli, Ben-Shahar and his colleagues realized that the lungs, like the nose, must have some means of detecting inhaled chemicals.

Earlier, a team at the University of Iowa, where Ben-Shahar was a postdoctoral research associate, had searched for genes expressed by patches of tissue from lung transplant donors. They found a group of ciliated cells that express bitter taste receptors. When offending substances were detected, the cilia beat more strongly to sweep them out of the airway. This result was featured on the cover of the Aug. 28, 2009, issue of Science.

But since people are sensitive to many inhaled substances, not just bitter ones, Ben-Shahar decided to look again. This time he found that these tissues also express odor receptors, not on ciliated cells but instead on neuroendocrine cells, flask-shaped cells that dump serotonin and various neuropeptides when they are stimulated.

This made sense. “When people with airway disease have pathological responses to odors, they’re usually pretty fast and violent,” said Ben-Shahar. “Patients suddenly shut down and can’t breathe, and these cells may explain why.”

Ben-Shahar stresses the differences between chemosensation in the nose and in the lung. The cells in the nose are neurons, he points out, each with a narrowly tuned receptor, and their signals must be woven together in the brain to interpret our odor environment.

The cells in the airways are secretory, not neuronal, cells, and they may carry more than one receptor, so they are broadly tuned. Instead of sending nerve impulses to the brain, they flood local nerves and muscles with serotonin and neuropeptides. “They are possibly designed,” he said, “to elicit a rapid, physiological response if you inhale something that is bad for you.”

The different mechanisms explain why cognition plays a much stronger role in taste and smell than in coughing in response to an irritant. It is possible, for example, to develop a taste for beer. But nobody learns not to cough; the response is rapid and largely automatic.

The scientists suspect these pulmonary neuroscretory cells contribute to the hypersensitivity of patients with COPD to airborne irritants. COPD is a group of diseases, including emphysema, that is characterized by coughing, wheezing, shortness of breath and chest tightness.

When the scientists looked at the airway tissues from patients with COPD, they discovered that they had more of these neurosecretory cells than airway tissues from healthy donors.

Of mice and men
As a geneticist, Ben-Shahar would like to go farther, knocking out genes to make sure that the derangement of neurosecretory cells isn’t just correlated with airway diseases but instead suffices to produce it.

But there is a problem. “For example, a liver from a mouse and a liver from a human are pretty similar, they express the same types of cells. But the lungs from different mammalian species are often very different; you can see it at a glance,” Ben-Shahar said.

“Clearly, primates have evolved distinct cell lineages and signaling systems for respiratory-specific functions.”

This makes it challenging to unravel the biomolecular mechanisms of respiratory diseases.

Still, he is hopeful that the PNEC pathways will provide targets for drugs that would better control asthma, COPD and other respiratory diseases. They would be welcome. There has been a steep rise in these diseases in the past few decades, treatment options have been limited, and there are no cures.

Diana Lutz | EurekAlert!
Further information:
http://www.wustl.edu
http://news.wustl.edu/news/Pages/26271.aspx

More articles from Health and Medicine:

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

nachricht Hypoallergenic parks: Coming soon?
27.08.2015 | American Society of Agronomy

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>