Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutraceuticals Come in Stable, Tasty Microgels

06.03.2009
We should be eating more omega-3 fatty acids in food, not pills, but what if we don’t like fish, can’t prepare it well, afford it often, or all of the above? Food scientists are now developing economical, reliable ways to pack omega-3 fatty acids and other nutraceuticals into food via microgels.

Nutritionists are nearly unanimous in recommending that Americans should eat significantly more omega-3 fatty acids and consume them in foods, not in vitamin pills. The health-promoting fats are found in fish and some other food sources. But if we don’t like fish, can’t prepare it well, can’t afford it more often, or all of the above, what are we to do?

Food scientist Julian McClements and colleagues at the University of Massachusetts Amherst Center for Health & Wellness are now investigating more economical and reliable ways to incorporate omega-3 fatty acids into foods. They’re developing new microgel capsules to trap the omega-3 fatty acids, chemically stabilize them to prevent spoilage, and allow them to be easily incorporated in beverages, yogurts, dressings, desserts and ice cream, for example. All this without sacrificing taste, appearance or texture. Among other things, omega-3s are essential for normal growth in children and a recognized aid to heart health in adults.

In previous studies, McClements, an expert in food-based delivery systems, and his co-workers found that certain milk and soy proteins are good at preventing omega-3 fatty acids from going rancid. The researchers now want to find a way to economically produce large amounts of powdered omega-3 microgel particles rich in these anti-oxidant proteins from food-grade materials. To do this, they’re concentrating on new “structural” techniques for surrounding the delicate fish oils in a protective biopolymer microgel of water, antioxidant protein, and dietary fiber. These microgel particles resemble the familiar gelatin dessert, Jell-o, except that they’re microscopic.

Food as medicine is an unfamiliar concept to many American consumers, according to McClements and Eric Decker, chair of the UMass Amherst food science department and co-director of its Center for Health & Wellness. Many don’t remember the first wave of nutraceuticals introduced in the 1940s and 1950s when vitamin-fortified flour, cereals and milk were “unbelievably successful” in eliminating once-common diseases such as goiter and rickets caused by vitamin deficiencies, Decker notes.

While it’s becoming more common to hear of consumers picking up blueberry juice as a hedge against memory loss or whole-grain bread to ward off colon cancer, the United States remains one of the least receptive societies to the idea of food as preventive medicine compared to places like Japan and New Zealand. Nevertheless, because of their public health value, nutraceuticals are becoming a “hot topic” among North American nutritionists and food scientists.

The new generation of food scientists hopes to build on the earlier successes to address modern public health problems, more widespread but perhaps no less disabling and costly to society – obesity, diabetes, heart disease, osteoporosis, cancer. Specifically, UMass Amherst researchers like McClements are not only looking at cheaper, more reliable ways to incorporate nutrients like omega-3 fatty acids in food, but at molecules known as phytosterols from oats, for example, that can lower cholesterol, and flavonoids in orange peel that show promise for killing cancer cells.

With recent new grants from the USDA, McClements is already looking ahead to the next big thing in nutraceuticals: Time-release nanolaminated coatings around fat droplets for delivery at different levels in the human body. For example, he and colleagues are learning to coat droplets with dietary fibers so some will break down in the mouth to deliver flavor immediately while others break down in the stomach or small intestine to deliver peptides that signal fullness or satiety.

Still others might be designed not to break down until they reach the large intestine, where the laminated droplets would deliver anti-hypertensive or cancer-fighting food compounds that can’t survive digestive acids in the stomach. By manipulating food structure, McClements and other food scientists are also exploring ways to increase solubility in the small intestine so more of the nutrients are absorbed.

“More studies are needed before we can justify further work on tailoring foods to match an individual’s genetic makeup,” McClements adds, but that’s coming, as well, he predicts.

Europeans will readily pay more for food that promises to boost health, Decker observes. And in the past 20 years Japan has launched one of the most far-reaching public health campaigns anywhere, to increase nutraceutical consumption to control heart-disease-related health care costs and other problems. Watch for international food companies to team up with food science programs like the Health and Wellness Center at UMass Amherst to do the same.

David Julian McClements | Newswise Science News
Further information:
http://www.umass.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>