Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel target found for chemotherapy-resistant leukemia cells

13.05.2014

Researchers at Children's Hospital Los Angeles have discovered that by targeting a particular receptor, chemotherapy-resistant cancer cells can be killed in an acute form of childhood leukemia, offering the potential for a future treatment for patients who would otherwise experience relapse of their disease.

Nora Heisterkamp, PhD, and colleagues at The Saban Research Institute of Children's Hospital Los Angeles have discovered that by targeting the B-cell activating receptor (BAFF-R), chemotherapy-resistant precursor B acute lymphoblastic leukemia cells (pre-B ALL) can be selectively killed in vivo and in vitro. Results will be published on May 13 in Molecular Cancer Therapeutics.


This is Nora Heisterkamp, Ph.D.

Credit: Children's Hospital Los Angeles

Acute lymphoblastic leukemia (ALL) is characterized by an excessive amount of white blood cell precursors, called B-cell lymphoblasts, in the blood and bone marrow. B-cell lineage ALL (pre-B ALL) accounts for 80 to 85% of childhood ALL. Although the cure rate has increased, further advances can only be achieved by identifying mechanisms to treat specific subsets of chemotherapy-resistant leukemia cells.

In a previous study (Leukemia, 2013), the researchers had shown that BAFF-R is expressed on pre-B ALL cells but not on their normal counterparts, making selective killing of ALL cells possible by targeting this receptor.

"We've now demonstrated that BAFF-R is a strong potential therapeutic target for treating chemotherapy-resistant leukemia cells, without damaging healthy cells," said Heisterkamp, who is also professor of Research, Pediatrics and Pathology at the Keck School of Medicine of the University of Southern California.

Using a genetically-engineered antibody (anti-BAFF-R monoclonal antibody), Heisterkamp and colleagues have demonstrated that the BAFF-R could be successfully blocked in a dose-dependent manner. Inhibition of BAFF-R function rendered leukemia cells less viable in mouse models of the disease. Also, the presence of this antibody on the pre-B ALL cells resulted in increased killing of the cancer cells by natural killer (NK) cells and macrophages.

"We found that human pre-B ALL cells could be even further reduced when the anti-BAFF-R antibody was combined with chemotherapy or another therapeutic agent," said Heisterkamp. "We are looking at a potential one, two punch." Heisterkamp and her colleagues will continue to evaluate the use of this antibody for the treatment of ALL.

###

Co-authors include Reshmi Parameswaran, Min Lim, Fei Fei, Hisham Abdel-Azim, Anna Arutyunyan, Isabelle Schiffer, John Groffen, of The Saban Research Institute of Children's Hospital Los Angeles; and Margaret E. McLaughlin, Hermann Gram, Heather Huet, of Novartis Institute for Biomedical Research.

Funding for this research came from National Institutes of Health grants PHS CA090321, CA 172040, Alex's Lemonade Stand Foundation for Childhood Cancer, the V-Foundation for Cancer Research and Novartis Pharmaceuticals.

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been named the best children's hospital in California and among the top five in the nation for clinical excellence with its selection to the prestigious US News & World Report Honor Roll. Children's Hospital is home to The Saban Research Institute, one of the largest and most productive pediatric research facilities in the United States, is one of America's premier teaching hospitals and has been affiliated with the Keck School of Medicine of the University of Southern California since 1932.

For more information, visit http://www.CHLA.org. Follow us on Twitter, Facebook, YouTube and LinkedIn, or visit our blog: http://www.WeTreatKidsBetter.org.

Media Contact: Ellin Kavanagh, ekavanagh@chla.usc.edu (323) 361-8505

Ellin Kavanagh | Eurek Alert!

Further reports about: ALL B-cell Cancer Medicine blood leukemia lymphoblastic receptor therapeutic

More articles from Health and Medicine:

nachricht Putting prevention in their pockets
23.08.2016 | University at Buffalo

nachricht Legions of nanorobots target cancerous tumors with precision
16.08.2016 | Polytechnique Montréal

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>