Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel "Smart" Insulin Automatically Adjusts Blood Sugar in Diabetic Mouse Model

10.02.2015

Long-acting, glucose-responsive insulin derivative outperforms existing injectable insulin

For patients with type 1 diabetes (T1D), the burden of constantly monitoring their blood sugar and judging when and how much insulin to self-inject, is bad enough. Even worse, a miscalculation or lapse in regimen can cause blood sugar levels to rise too high (hyperglycemia), potentially leading to heart disease, blindness and other long-term complications, or to plummet too low (hypoglycemia), which in the worst cases can result in coma or even death.


Matthew Webber

Scientists have developed a smart insulin that self-activates in response to blood sugar levels. When blood sugar is high, the insulin becomes active, working quickly to normalize blood sugar levels. One injection of the smart insulin, called Ins-PBA-F, can repeatedly and automatically normalize blood sugar levels over a minimum of 14 hours in mice with a type 1 diabetes-like condition. Scientists are now developing the modified insulin into a therapy suitable for human use. Doing so would greatly improve the health and quality of life for diabetics.

To mitigate the dangers inherent to insulin dosing, a University of Utah biochemist and fellow scientists have created Ins-PBA-F, a long-lasting “smart” insulin that self-activates when blood sugar soars. Tests on mouse models for type 1 diabetes show that one injection works for a minimum of 14 hours, during which time it can repeatedly and automatically lower blood sugar levels after mice are given amounts of sugar comparable to what they would consume at mealtime.

Ins-PBA-F, acts more quickly, and is better at lowering blood sugar, than long-acting insulin detimir, marketed as LEVIMIR. In fact, the speed and kinetics of touching down to safe blood glucose levels are identical in diabetic mouse models treated with Ins-PBA-F and in healthy mice whose blood sugar is regulated by their own insulin. A study showing these findings will be published Feb. 9 in PNAS Early Edition.

"This is an important advance in insulin therapy," says co-first author Danny Chou, Ph.D., USTAR investigator and assistant professor of biochemistry at the University of Utah. “Our insulin derivative appears to control blood sugar better than anything that is available to diabetes patients right now.” He will continue evaluating the long-term safety and efficacy of Ins-PBA-F. The insulin derivative could reach Phase 1 human clinical trials in two to five years.

“At present, there is no clinically approved glucose-responsive modified insulin,” says Matthew Weber, Ph.D., co-first author with Chou and Benjamin Tang, Ph.D., who performed the work together while postdoctoral fellows at MIT in collaboration with senior authors and MIT professors Robert Langer, Ph.D., and Daniel Anderson, Ph.D. “The development of such an approach could contribute to greater therapeutic autonomy for diabetic patients.”

The hallmark symptom of diabetes is inadequate control of blood sugar. The deficit is most pronounced in type 1 diabetes, which develops when insulin-producing beta-cells of the pancreas are destroyed. Without insulin, there is no way to shuttle sugar out of the blood and into cells, where it is used for energy. T1D patients depend on daily insulin injections for survival.

Despite advances in diabetes treatment such as insulin pumps and the development of four types of insulin, patients must still manually adjust how much insulin they take on a given day. Blood sugar levels vacillate widely depending on a number of factors such as what someone chooses to eat and whether they exercise.

A glucose-responsive insulin that is automatically activated when blood sugar levels are high would eliminate the need for additional boosts of insulin, and reduce the dangers that come with inaccurate dosing. Various such “smart” insulins under development typically incorporate a protein-based barrier, such as a gel or coating, that inhibits insulin when blood sugar is low. However, such biologically based components are often sources of trouble, provoking unwanted side effects such as an immune response.

Ins-PBA-F differs in that it was created by chemically modifying insulin directly. Ins-PBA-F consists of a long-acting insulin derivative that has a chemical moiety, phenylboronic acid (PBA), added to one end. Under normal conditions, Ins-PBA-F binds to serum proteins that circulate in the bloodstream, blocking its activity. When blood sugar levels are high, glucose sugars bind PBA, which acts like a trigger to release Ins-PBA-F so it can get to work.

“Before, a ‘smart’ insulin really meant delivering insulin differently,” says Chou. “Ins-PBA-F fits the true definition of ‘smart’ insulin, where the insulin itself is glucose responsive. It is the first in its class.”

Chou explains that because Ins-PBA-F is a chemically modified version of a naturally occurring hormone, he thinks it is likely to be safe enough to use on a daily basis, similar to other insulin derivatives that are on the market today.

“My goal is to make life easier, and safer for diabetics,” he says.

This work was supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Tayebati Family Foundation, the National Institutes of Health, and the Juvenile Diabetes Research Foundation.

Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Danny Hung-Chieh Chou, Matthew J. Webber, Benjamin C. Tang, Amy B. Lin, Lavanya S. Thapa, David Deng, Jonathan V. Truong, Abel B. Cortinas, Robert Langer, and Daniel Anderson. PNAS Early Edition, Feb. 9, 2015

Contact Information
Julie Kiefer
Communications Specialist
jkiefer@neuro.utah.edu
Phone: 801-597-4258

Julie Kiefer | newswise
Further information:
http://unews.utah.edu/

Further reports about: Health Sciences Insulin blood sugar mouse models sugar type 1 diabetes

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>