Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug target linked to insulin secretion and type 2 diabetes treatment

26.05.2014

A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. The team is part of the Montreal Diabetes Research Center and their study, published recently in Cell Metabolism, was directed by researchers Marc Prentki and Murthy Madiraju.

Insulin is an important hormone in our body that controls glucose and fat utilization. Insufficient insulin release by the beta-cells of the pancreas and interference with the action of insulin lead to type 2 diabetes. The secretion in the blood of insulin is dependent upon the utilization of glucose and fat by the beta-cells and the production of a novel signal that they discovered named monoacylglycerol.

"Despite significant research on the mechanisms implicated in insulin secretion, the signal molecules involved in this process remained enigmatic; the identification of these signals is necessary to develop better therapeutics against diabetes," explains Marc Prentki, Director of the Montreal Diabetes Research Centre and Professor at the University of Montreal. Marc Prentki holds the Canada Research Chair in Diabetes and Metabolism.

"When sugar is being used by the insulin secreting pancreatic beta-cell, it produces monoacylglycerol, a fat-like signal and this is associated with insulin release into blood; we found that the production of monoacylglycerol is essential for glucose-stimulated insulin secretion by the beta-cell," says Murthy Madiraju, Researcher at the CRCHUM.

Importantly, the research team discovered that an enzyme called alpha/beta hydrolase domain-6 (in short ABHD6) breaks down monoacylglycerol and thus negatively controls insulin release. These researchers said that "an ideal drug for type-2 diabetes would increase insulin levels in blood by enhancing the beta cells response to glucose only when it is elevated and also increase the sensitivity of body tissues to insulin; this is precisely what ABHD6 inhibition does and thus we have identified a unique new target for type 2 diabetes."

The research team is currently in the process of discovering new and potent blockers of ABHD6 that do not show any unwanted toxicity and which can be developed as potential drugs for type 2 diabetes. These studies are being done in collaboration with AmorChem Financial, Inc., and its subsidiary NuChem Therapeutics, Montreal.

###

About the research project

The study was supported by the Canadian Institutes of Health Research. The Montreal research team directed by Marc Prentki and Murthy Madiraju consisted of Shangang Zhao, Yves Mugabo, Jose Iglesias, who are first authors of the study and performed most of the experimental work, and Viviane Delghingaro-Augusto, Roxane Lussier, Marie-Line Peyot, Erik Joly, and Bouchra Taïb, who also contributed. The study was conducted in collaboration with Dr Herbert Gaisano and Li Xie (Toronto), J. Mark Brown and Matthew A. Davis (Winston-Salem, NC), and Abdelkarim Abousalham (France). For more information, please visit the journal page at: http://www.cell.com/cell-metabolism/abstract/S1550-4131(14)00166-1

William Raillant-Clark | Eurek Alert!

Further reports about: ABHD6 Diabetes Montreal Therapeutics beta-cells blood enzyme sugar

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>