Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug target linked to insulin secretion and type 2 diabetes treatment

26.05.2014

A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. The team is part of the Montreal Diabetes Research Center and their study, published recently in Cell Metabolism, was directed by researchers Marc Prentki and Murthy Madiraju.

Insulin is an important hormone in our body that controls glucose and fat utilization. Insufficient insulin release by the beta-cells of the pancreas and interference with the action of insulin lead to type 2 diabetes. The secretion in the blood of insulin is dependent upon the utilization of glucose and fat by the beta-cells and the production of a novel signal that they discovered named monoacylglycerol.

"Despite significant research on the mechanisms implicated in insulin secretion, the signal molecules involved in this process remained enigmatic; the identification of these signals is necessary to develop better therapeutics against diabetes," explains Marc Prentki, Director of the Montreal Diabetes Research Centre and Professor at the University of Montreal. Marc Prentki holds the Canada Research Chair in Diabetes and Metabolism.

"When sugar is being used by the insulin secreting pancreatic beta-cell, it produces monoacylglycerol, a fat-like signal and this is associated with insulin release into blood; we found that the production of monoacylglycerol is essential for glucose-stimulated insulin secretion by the beta-cell," says Murthy Madiraju, Researcher at the CRCHUM.

Importantly, the research team discovered that an enzyme called alpha/beta hydrolase domain-6 (in short ABHD6) breaks down monoacylglycerol and thus negatively controls insulin release. These researchers said that "an ideal drug for type-2 diabetes would increase insulin levels in blood by enhancing the beta cells response to glucose only when it is elevated and also increase the sensitivity of body tissues to insulin; this is precisely what ABHD6 inhibition does and thus we have identified a unique new target for type 2 diabetes."

The research team is currently in the process of discovering new and potent blockers of ABHD6 that do not show any unwanted toxicity and which can be developed as potential drugs for type 2 diabetes. These studies are being done in collaboration with AmorChem Financial, Inc., and its subsidiary NuChem Therapeutics, Montreal.

###

About the research project

The study was supported by the Canadian Institutes of Health Research. The Montreal research team directed by Marc Prentki and Murthy Madiraju consisted of Shangang Zhao, Yves Mugabo, Jose Iglesias, who are first authors of the study and performed most of the experimental work, and Viviane Delghingaro-Augusto, Roxane Lussier, Marie-Line Peyot, Erik Joly, and Bouchra Taïb, who also contributed. The study was conducted in collaboration with Dr Herbert Gaisano and Li Xie (Toronto), J. Mark Brown and Matthew A. Davis (Winston-Salem, NC), and Abdelkarim Abousalham (France). For more information, please visit the journal page at: http://www.cell.com/cell-metabolism/abstract/S1550-4131(14)00166-1

William Raillant-Clark | Eurek Alert!

Further reports about: ABHD6 Diabetes Montreal Therapeutics beta-cells blood enzyme sugar

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>