Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel drug target linked to insulin secretion and type 2 diabetes treatment

26.05.2014

A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. The team is part of the Montreal Diabetes Research Center and their study, published recently in Cell Metabolism, was directed by researchers Marc Prentki and Murthy Madiraju.

Insulin is an important hormone in our body that controls glucose and fat utilization. Insufficient insulin release by the beta-cells of the pancreas and interference with the action of insulin lead to type 2 diabetes. The secretion in the blood of insulin is dependent upon the utilization of glucose and fat by the beta-cells and the production of a novel signal that they discovered named monoacylglycerol.

"Despite significant research on the mechanisms implicated in insulin secretion, the signal molecules involved in this process remained enigmatic; the identification of these signals is necessary to develop better therapeutics against diabetes," explains Marc Prentki, Director of the Montreal Diabetes Research Centre and Professor at the University of Montreal. Marc Prentki holds the Canada Research Chair in Diabetes and Metabolism.

"When sugar is being used by the insulin secreting pancreatic beta-cell, it produces monoacylglycerol, a fat-like signal and this is associated with insulin release into blood; we found that the production of monoacylglycerol is essential for glucose-stimulated insulin secretion by the beta-cell," says Murthy Madiraju, Researcher at the CRCHUM.

Importantly, the research team discovered that an enzyme called alpha/beta hydrolase domain-6 (in short ABHD6) breaks down monoacylglycerol and thus negatively controls insulin release. These researchers said that "an ideal drug for type-2 diabetes would increase insulin levels in blood by enhancing the beta cells response to glucose only when it is elevated and also increase the sensitivity of body tissues to insulin; this is precisely what ABHD6 inhibition does and thus we have identified a unique new target for type 2 diabetes."

The research team is currently in the process of discovering new and potent blockers of ABHD6 that do not show any unwanted toxicity and which can be developed as potential drugs for type 2 diabetes. These studies are being done in collaboration with AmorChem Financial, Inc., and its subsidiary NuChem Therapeutics, Montreal.

###

About the research project

The study was supported by the Canadian Institutes of Health Research. The Montreal research team directed by Marc Prentki and Murthy Madiraju consisted of Shangang Zhao, Yves Mugabo, Jose Iglesias, who are first authors of the study and performed most of the experimental work, and Viviane Delghingaro-Augusto, Roxane Lussier, Marie-Line Peyot, Erik Joly, and Bouchra Taïb, who also contributed. The study was conducted in collaboration with Dr Herbert Gaisano and Li Xie (Toronto), J. Mark Brown and Matthew A. Davis (Winston-Salem, NC), and Abdelkarim Abousalham (France). For more information, please visit the journal page at: http://www.cell.com/cell-metabolism/abstract/S1550-4131(14)00166-1

William Raillant-Clark | Eurek Alert!

Further reports about: ABHD6 Diabetes Montreal Therapeutics beta-cells blood enzyme sugar

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>