Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame research could provide new insights into tuberculosis and other diseases

19.09.2012
Researchers Patricia A. Champion and Matthew Champion from the University of Notre Dame's Eck Institute for Global Health have developed a method to directly detect bacterial protein secretion, which could provide new insights into a variety of diseases including tuberculosis.

The Champions point out that bacteria use a variety of secretion systems to transport proteins beyond their cell membrane in order to interact with their environment. For bacterial pathogens like TB these systems transport bacterial proteins that promote interaction with host cells, leading to virulent disease.

Previously, researchers have relied on methods that have fused enzymes or fluorescent markers to bacterial proteins to identify bacterial genes that are used to export bacterial proteins into host cells. However, these methods can't be used in the analysis of all bacterial secretion systems, which has limited understanding of the mechanisms that bacteria use to interact with host cells.

The Champions developed a modified form of bacterial proteomics using a MALDI-TOF mass spectrometer, which directly detects the proteins from whole-colonies by ionizing them with a laser. This research revealed that the method was able to specifically monitor a specialized form protein secretion, which is a major virulence determinant in both mycobacterial pathogens, such as TB, and Gram-positive pathogens, such as Bacillus and Staphylococcus species.

The Champions demonstrated that this new method is applicable to the study of other bacterial protein export systems that could not be effectively studied under previous methods. Their method could also help in the identification of compounds that can inhibit bacterial protein secretion.

The method's importance can be seen in the fact that there are approximately 2 million fatal TB cases a year, mostly in the developing world. Also, antibiotic resistant strains of TB are appearing increasingly.

The Champions' research findings appeared in the Journal Molecular and Cellular Proteomics. The research was funded by the National Institutes of Health and Notre Dame's Center for Rare and Neglected Diseases and capitalization funds from Notre Dame.

Patricia A. Champion | EurekAlert!
Further information:
http://www.nd.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>