Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch-Blocking Drugs Kill Brain Cancer Stem Cells, yet multiple therapies may be needed

26.02.2010
Working with mice, Johns Hopkins scientists who tested drugs intended to halt growth of brain cancer stem cells – a small population of cells within tumors that perpetuate cancer growth – conclude that blocking these cells may be somewhat effective, but more than one targeted drug attack may be needed to get the job done.

One focus of attack is a chemical pathway within stem cells known as Notch, which scientists have shown is important for cancer stem cell growth. A new study published in the January 28 issue of Stem Cells by Charles Eberhart, M.D., Ph.D., associate professor of pathology, ophthalmology, and oncology at Johns Hopkins, now extends these findings to glioblastoma, the most common malignant brain tumor, and ultimately suggests other pathways and treatment with two or more drugs may need to be involved.

Eberhart based his conclusion on experiments in which he coaxed a glioblastoma cell line to form embryolike balls called neurospheres. Unlike most cells that will clump together in a culture dish, neurospheres – more organized groups of neural cells – can only form from stem cells. When Eberhart treated the neurospheres with a drug called GSI-18, which blocks the Notch pathway, the spheres were reduced by 70 percent or more. Eberhart also found that molecular markers typically found on the surface of brain cancer stem cells also plunged.

“This told us that the Notch pathway is a good target for drug development,” says Eberhart, but further experiments suggested this approach may not be thorough enough.

In a second set of experiments, Eberhart collected the neurospheres that remained after treatment with the Notch-blocking drug and injected them into the brains of mice. The neurosphere transplants eventually grew into tumors and reignited the Notch pathway.

“This result suggested we didn’t get rid of all the stem cells,” says Eberhart, “so it’s likely we may need to add more therapies or increase the dosage of Notch-blocking drugs.”

The study by Eberhart identified additional molecular pathways, including Stat 3 and AKT, which are connected to Notch. He says that a combination of therapies blocking Notch and other pathways such as these could target brain cancer stem cells at several levels and possibly avoid drug resistance.

To test how a Notch-blocking drug worked in an animal model, Eberhart injected tumors into the brains of mice and let the cancer grow for two weeks. Then, at the tumor site, he implanted a polymer bead that was soaked in GSI-18. Five of six mice that received the drug-laden bead survived while all 12 that received a bead with no drug died.

Eberhart notes that Notch-targeting drugs can prove problematic in therapy because the Notch pathway is critically important for cells in the gut, helping cells there alternate between secreting mucus and absorbing nutrients. “A dosing regimen that preserves gut function has been developed, and forthcoming studies in humans will test whether it can kill the cancer stem cells.”

Funds for this research were provided by the Accelerate Brain Cancer Cure Project Award, the American Brain Tumor Association, Voices Against Brain Cancer Research, the National Institutes of Health, and the Brain Tumor Funders Collaborative.

Research participants include Xing Fan, Thant S. Zhu, Mary E. Soules, and Caroline E. Talsma from the University of Michigan; Leila Khaki, Naheed Gul, Cheryl Koh, and Jiangyang Zhang from Johns Hopkins; Yue-Ming Li from Memorial Sloan-Kettering Cancer Center; Jarek Maciaczyck and Guido Nikkhah from the University of Freiberg; and Francesco DiMeco, Sara Piccirillo, and Angelo L. Vescovi from the University of Milan.

Media Contact: Vanessa Wasta
410-955-1287; wastava@jhmi.edu
On the Web:
http://apps.pathology.jhu.edu/blogs/eberhart/

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>