Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norovirus evades immune system by hiding out in rare gut cells

12.10.2017

Penn study informs vaccine development

Noroviruses are the leading cause of non-bacterial gastroenteritis in the world and are estimated to cause 267 million infections and 20,000 deaths each year. This virus causes severe diarrhea, nausea, and stomach pain.


A new mouse study shows that, even in immunized animals, noroviruses can escape the immune system and still spread by hiding out in an extremely rare type of cell in the gut.

Credit: Center for Disease Control and Prevention

Although often referred to as the "cruise ship" virus in the United States, noroviruses are an expensive and serious public health problem particularly among young children, the elderly, and immune-compromised patients. Now, in a new study published in Immunity this week, researchers from the Perelman School of Medicine at the University of Pennsylvania have used a mouse model to show that, even in immunized animals, noroviruses can escape the immune system and still spread by hiding out in an extremely rare type of cell in the gut.

"Current vaccines against norovirus have been ineffective despite eliciting strong antibody responses," said senior author E. John Wherry, PhD, a professor of Microbiology and director of the Penn Institute for Immunology. "Understanding the unique norovirus characteristic of hiding from the host immune system may explain its biology and present opportunities to improve vaccines and therapeutics."

While most infected people clear the virus within a few days, some individuals continue to shed virus for weeks to months after. Such persistently infected people may be a source of outbreaks, but it was unclear why the immune system fails to eliminate the virus in these cases.

"The cruise ship outbreaks of norovirus are high profile, but it happens everywhere - daycare centers, eldercare facilities, and more," said first author Vesselin T. Tomov, MD, PhD, an assistant professor of Gastroenterology. "Noroviruses can cause persistent infections, challenging the long-held view that they are transient pathogens."

The Penn investigators defined and tracked T-cell responses in mice infected with either an acute or chronic strain of mouse norovirus to gain insight into mechanisms of viral clearance and persistence. At first, they hypothesized that persistent norovirus infection caused T cells to become exhausted rendering them non-functioning, similar to other chronic viral infections such as HIV or hepatitis C. To their surprise, however, T cells remained functional even after months of norovirus infection.

The team then looked at the earliest stages of response by the immune system and found two phases to that response. During the initial days after infection, T cells reacted strongly to the virus and controlled it. But, after about three days, T cells could no longer detect norovirus in 50 to 70 percent of the mice infected with the chronic strain.

The researchers faced a paradox because the T cells responding to the virus appeared "ignorant" or "unable to see" the virus, yet there was continuous shedding of norovirus in mouse feces. To explain this conundrum, they next hypothesized that actively multiplying norovirus had been sequestered somewhere in the gut out of reach of T cells.

Tomov conducted a series of experiments to test that hypothesis. He eventually found evidence that norovirus does hide in rare gut cells that fail to communicate with T cells and alert them of the presence of the pathogen. "We found a novel escape mechanism where norovirus becomes essentially invisible to the immune system in the intestine while still producing large amounts of virus that is shed from the intestines," Tomov said.

Coauthors at Washington University have found that norovirus hides in specialized, ultra-rare cells of the gut lining, on the order of only a few hundred cells out of the billions that line the mouse gut. These cells act as mega factories for norovirus production, while allowing the virus to evade the immune system. The team is now working on this aspect of norovirus infection.

These findings might help explain why norovirus vaccines being tested have shown limited effectiveness and also hint that future vaccines would need to elicit immunity that acts very robustly in the first three days after infection before the virus moves into hiding. The results also dovetail with the fact that no one has yet found an animal reservoir for the virus. "There may be some people out there who are living with the chronic strain of the virus and are persistently, yet unknowingly, shedding it," Tomov said.

Next, the researchers plan to investigate how to improve protection against this virus by combining T cell and antibody approaches for vaccines. Identifying the cellular reservoir of norovirus may also enable the development of therapeutics to help prevent or purge persisting infection. In addition, testing whether similar mechanisms occur in humans is a major goal that will not only enable better vaccine development, but also help test for a potential role of norovirus as a co-factor in other intestinal diseases.

###

This work was supported by the National Institutes of Health (NIDDK T32-DK007066, NIDDK P30DK050306, U01-AI-095608, U19 AI AI082630, P01 AI AI112521, K08-DK097301).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: Norovirus T cells immune system norovirus infection

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>