Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive brain stimulation helps improve motor function in stroke patients

11.11.2010
A noninvasive electric stimulation technique administered to both sides of the brain can help stroke patients who have lost motor skills in their hands and arms, according to a new study led by researchers at Beth Israel Deaconess Medical Center (BIDMC).

Described in today's Online Issue of the journal Neurology, the findings showed that stroke patients who received bihemispheric transcranial direct current stimulation (tDCS) coupled with a regimen of physical and occupational therapy had a three-fold greater improvement in motor function compared with patients who received only physical/occupational rehabilitation and a placebo form of stimulation.

"We think that the key to this therapy's success in improving stroke patients' motor function is based on its ability to affect the brain activity on both the stroke-affected side of the brain and the healthy side of the brain as patients work to re-learn lost motor skills," says senior author Gottfried Schlaug, MD, PhD, the Director of the Stroke Service in BIDMC's Department of Neurology and Associate Professor of Neurology at Harvard Medical School.

In the brain of a healthy individual, the left and right sides of the motor cortex work in tandem, inhibiting one another as needed in order to successfully carry out such one-sided movements as writing or teeth-brushing. But, explains lead author Robert Lindenberg, MD, an HMS Instructor of Neurology at BIDMC, when a person suffers a stroke (as might happen when an artery to the brain is blocked by a blood clot or atherosclerotic deposit) the interaction between the two sides of the brain involved in motor skills changes.

"As a result," he explains, "the motor region on the unaffected side of the brain begins to exert an unbalanced effect onto the motor region of the brain's damaged side." And, as Schlaug and Lindenberg further explain, this leads to an increased inhibition of the stroke-damaged motor region, as the remaining intact portions of this region try to increase activity in the motor pathways to facilitate recovery.

tDCS is an experimental therapy in which a small electrical current is passed to the brain through the scalp and skull. Because previous studies had determined that tDCS could improve motor function if applied to either the damaged or undamaged side of the brain, Schlaug's team hypothesized that applying tDCS to both sides – while simultaneously engaging the stroke patient in motor skill relearning activities – would further speed the recovery process.

"tDCS works by modulating regional brain activity," explains Schlaug. "In applying this therapy to both hemispheres of the brain, we used one direction of current to increase brain activity on the damaged side, and used the reverse current to inhibit brain activity on the healthy side, thereby rebalancing the interactions of both sides of the brain."

Schlaug and his collaborators studied 20 patients who had suffered an ischemic stroke at least five months prior to the onset of the study. Participants were separated into two groups: Half of the subjects received a 30-minute daily treatment session of electrical stimulation, while the other half received a "sham" placebo treatment designed to mimic electrical stimulation. Both groups of patients concurrently received 60 minutes of occupational and physical therapy. The treatment was repeated daily for five days.

By using sophisticated MRI (magnetic resonance imaging) techniques, the researchers were able to "map" the positions of the stroke lesions in relation to the brain's motor system. "This helped us to very closely match the two patient groups," notes Schlaug. "Not only did the two groups of patients outwardly exhibit similar motor impairments, but we could tell from the MRIs that their lesions were positioned in similar areas of the brain. This novel approach strengthens the results, since no other between-group factor could explain the therapy's effects."

The results showed that the patients treated with tDCS exhibited a three-fold improvement in motor outcomes, such as an improved ability to grasp or perform wrist and finger movements, compared with patients who underwent physical and occupational therapy coupled with placebo stimulation. In addition, functional brain imaging showed that the therapy's effect was correlated with increased activity of the brain's non-damaged motor parts on the side of the stroke hemisphere.

"This is the first time that stimulation therapy has been administered simultaneously to both brain hemispheres and coupled with physical/occupational therapy," explains Schlaug. "Both sides of the brain play a role in recovery of function [following a stroke] and the combination of peripheral sensorimotor activities and central brain stimulation increases the brain's ability to strengthen existing connections and form new connections. It is a testament of just how plastic the brain can be if novel and innovative therapies are applied using our current knowledge of brain function."

This study was supported, in part, by grants from the National Institutes of Health.

In addition to Lindenberg and Schlaug, study coauthors include BIDMC investigators V. Renga, MD, L.L. Zhu, BA, and D. Nair, MD.

BIDMC is a patient care, teaching and research affiliate of arvard Medical School and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical affiliate of the Joslin Diabetes Center and a patient care affiliate of the Harvard/Dana-Farber Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>