Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise-induced hearing loss -- genetic cause and mechanism discovered

06.11.2015

Scientists at the Institut Pasteur, Inserm, the Collège de France and Pierre & Marie Curie University, working closely with scientists at the University of Auvergne, have recently discovered the function of pejvakin, a molecule that plays a vital role in the hearing system. The absence of this molecule appears to be responsible for noise-induced hearing loss, one of the most common causes of deafness. The scientists' discovery, which was published on November 5 in the journal Cell, offers new prospects for the treatment of this condition.

In 2006, the team led by Christine Petit in the Institut Pasteur's Genetics & Physiology of Hearing Unit, especially Sedigheh Delmaghani, working in cooperation with Paul Avan's team at the University of Auvergne's Laboratory of Sensory Biophysics, identified a new gene that was responsible for early-onset sensorineural hearing loss. This gene codes for a protein which was given the name "pejvakin" (which means "echo" in Persan).


Sound exposure induces a proliferation of peroxisomes (in green) in the auditory sensory cells of mice harboring pejvakin (Pjvk+/+, center) and causes their degeneration in mice lacking pejvakin (Pjvk-/-, right).

Credit: Institut Pasteur

Audiometric tests performed on individuals with mutations in this gene subsequently revealed an unusually high level of diversity in hearing impairments, in terms of both severity and characteristics. This latest study, carried out by scientists from the Institut Pasteur, Inserm, the Collège de France, Pierre & Marie Curie University and the University of Auvergne, aimed to clarify the reasons for this heterogeneity.

The scientists, particularly Sedigheh Delmaghani, studied young mice whose pejvakin gene had been inactivated. Their observations revealed an astonishing variation in hearing impairments from one mouse to the next, ranging from mild to profound hearing loss. Young mice are highly vocal for the first three weeks after they are born, particularly when feeding.

The more mice there are in the cage, the noisier their acoustic environment. The scientists observed that as the number of mice in the cage increased, so did their hearing threshold - the minimum sound level at which they are able to hear sounds. Using direct, controlled acoustic stimulation, the scientists were able to prove that the auditory system of mice lacking in pejvakin is affected by their acoustic environment.

The scientists then set about investigating the physiological causes of this phenomenon. They observed that in mice without pejvakin, the auditory sensory cells are damaged as soon as they are exposed to even seemingly harmless sounds - the equivalent of a minute spent in a nightclub for humans. These cells need two weeks of silence to become functional again.

With prolonged or repeated exposure, the cells eventually die. The scientists also identified the noise-sensitive element in the cell as being the peroxisome, a small organelle involved in detoxification. "To put it simply, we discovered that a genetic disorder could be responsible for noise-induced hearing loss triggered by even very low noise levels," explained Christine Petit.

The auditory sensory cells in people with impaired pejvakin were observed to be extremely vulnerable to noise. When a standard hearing test was performed on these hearing-impaired individuals, the responses of their auditory sensory cells and neurons, although normal to begin with, gradually worsened as the test went on as a result of the sounds used.

Noise-induced hearing loss is becoming increasingly prevalent. Urban crowding means that large cities are getting noisier, particularly in developing countries. WHO predicts that by 2030, one billion people will be at risk of noise-induced hearing loss.

"Some of us have less effective natural defenses against the impact of overexposure to sound than others," explained Profs. Avan and Petit. "Five million people in France end up suffering from hearing loss, which has a negative impact on their social life. Hearing aids are one solution, but they work by exposing the wearer to amplified sounds. However, we don't yet know what percentage of the population is either lacking in pejvakin or has a less effective form of the protein. Our findings indicate that in these people, hearing aids are most probably not only ineffective but also harmful."

The scientists will now look into possible techniques to restore the function of pejvakin, particularly using gene therapy, which has already proved successful in conserving hearing in mice lacking in pejvakin, even when they are overexposed to noise.

###

This study received funding from the Louis-Jeantet Foundation, the Bettencourt Schueller Foundation, Humanis, AG2R La Mondiale, the BNP Paribas Foundation and Agir pour l'Audition Foundation.

Media Contact

Myriam Rebeyrotte
presse@pasteur.fr

http://www.pasteur.fr

Myriam Rebeyrotte | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>