Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA discovers way to detect low-level exposure to seafood toxin in marine animals

07.05.2012
Discovery has potential human-health benefits

NOAA scientists and their colleagues have discovered a biological marker in the blood of laboratory zebrafish and marine mammals that shows when they have been repeatedly exposed to low levels of domoic acid, which is potentially toxic at high levels.

While little is known about how low-level exposure to domoic acid affects marine animals or humans, high-level exposure through eating contaminated seafood can be toxic, and can lead to amnesic shellfish poisoning, with symptoms such as seizures, short-term memory loss and, in rare cases, death. Domoic acid is produced by particular species of marine algae and accumulates in marine animals such as clams and mussels.

The findings are reported in a study published in Public Library of Science journal (PLoS ONE), a peer-reviewed scientific journal. Up until now, the absence of a marker for such chronic exposure has been a barrier to accurately assessing possible effects to humans.

"This study paves the way for creating reliable blood tests for low-level domoic acid exposure, which could help scientists assess the effects of chronic exposure to both wildlife and people who eat seafood," said Kathi Lefebvre, Ph.D., a NOAA fisheries biologist and the lead author of the study. "We don't know yet if the same antibody response we found in the laboratory in zebrafish and naturally exposed California sea lions also occurs in humans. Our next step is to team up with human-health experts to answer that question."

In the NOAA study, scientists injected zebrafish two to four times a month over nine months with low levels of domoic acid in the laboratory. Although the zebrafish appeared healthy after 18 weeks, scientists detected an antibody response for domoic acid in blood samples. Scientists found a similar antibody response in blood samples taken from wild sea lions from central California, confirming that natural exposure to the toxin produces a similar response in marine mammals.

The researchers also found that long-term, low-level exposure to domoic acid does not build tolerance or resistance to it, but instead makes zebrafish more sensitive to the neurotoxin.

Domoic acid was first identified as a shellfish toxin in 1987, after more than 100 people were sickened from eating contaminated mussels harvested off the Canadian province of Prince Edward Island. In 1998, more than 400 California sea lions died on the U.S. west coast after consuming anchovies containing domoic acid.

Since the early 1990s, regular monitoring of shellfish has protected people from amnesic shellfish poisoning caused by high levels of domoic acid.

Lefebvre will continue to work with co-authors, John D. Hansen, Ph.D, an immunologist with the U.S. Geological Survey-Western Fisheries Research Center, Donald R. Smith, Ph.D., a toxicologist at the University of California at Santa Cruz, and David J. Marcinek, Ph.D., a physiologist at the University of Washington, to look for health consequences of low-level exposure to domoic acid using the antibody marker.

The study, "A Novel Antibody-Based Biomarker for Chronic Algal Toxin Exposure and Sub-Acute Neurotoxicity," was conducted by scientists with NOAA, the Marine Mammal Center, the U.S. Geological Survey-Western Fisheries Research Center, the University of Washington and the University of California Santa Cruz, and is available at http://dx.plos.org/10.1371/journal.pone.0036213 Funding for the study was provided by NOAA's Ecology and Oceanography of Harmful Algal Blooms program.

Brian Gorman | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>