Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA discovers way to detect low-level exposure to seafood toxin in marine animals

07.05.2012
Discovery has potential human-health benefits

NOAA scientists and their colleagues have discovered a biological marker in the blood of laboratory zebrafish and marine mammals that shows when they have been repeatedly exposed to low levels of domoic acid, which is potentially toxic at high levels.

While little is known about how low-level exposure to domoic acid affects marine animals or humans, high-level exposure through eating contaminated seafood can be toxic, and can lead to amnesic shellfish poisoning, with symptoms such as seizures, short-term memory loss and, in rare cases, death. Domoic acid is produced by particular species of marine algae and accumulates in marine animals such as clams and mussels.

The findings are reported in a study published in Public Library of Science journal (PLoS ONE), a peer-reviewed scientific journal. Up until now, the absence of a marker for such chronic exposure has been a barrier to accurately assessing possible effects to humans.

"This study paves the way for creating reliable blood tests for low-level domoic acid exposure, which could help scientists assess the effects of chronic exposure to both wildlife and people who eat seafood," said Kathi Lefebvre, Ph.D., a NOAA fisheries biologist and the lead author of the study. "We don't know yet if the same antibody response we found in the laboratory in zebrafish and naturally exposed California sea lions also occurs in humans. Our next step is to team up with human-health experts to answer that question."

In the NOAA study, scientists injected zebrafish two to four times a month over nine months with low levels of domoic acid in the laboratory. Although the zebrafish appeared healthy after 18 weeks, scientists detected an antibody response for domoic acid in blood samples. Scientists found a similar antibody response in blood samples taken from wild sea lions from central California, confirming that natural exposure to the toxin produces a similar response in marine mammals.

The researchers also found that long-term, low-level exposure to domoic acid does not build tolerance or resistance to it, but instead makes zebrafish more sensitive to the neurotoxin.

Domoic acid was first identified as a shellfish toxin in 1987, after more than 100 people were sickened from eating contaminated mussels harvested off the Canadian province of Prince Edward Island. In 1998, more than 400 California sea lions died on the U.S. west coast after consuming anchovies containing domoic acid.

Since the early 1990s, regular monitoring of shellfish has protected people from amnesic shellfish poisoning caused by high levels of domoic acid.

Lefebvre will continue to work with co-authors, John D. Hansen, Ph.D, an immunologist with the U.S. Geological Survey-Western Fisheries Research Center, Donald R. Smith, Ph.D., a toxicologist at the University of California at Santa Cruz, and David J. Marcinek, Ph.D., a physiologist at the University of Washington, to look for health consequences of low-level exposure to domoic acid using the antibody marker.

The study, "A Novel Antibody-Based Biomarker for Chronic Algal Toxin Exposure and Sub-Acute Neurotoxicity," was conducted by scientists with NOAA, the Marine Mammal Center, the U.S. Geological Survey-Western Fisheries Research Center, the University of Washington and the University of California Santa Cruz, and is available at http://dx.plos.org/10.1371/journal.pone.0036213 Funding for the study was provided by NOAA's Ecology and Oceanography of Harmful Algal Blooms program.

Brian Gorman | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>