Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT math professor illuminates cellular basis of neural impulse transmission

03.11.2010
NJIT Associate Professor Victor Matveev, PhD, in the department of mathematical sciences, was part of a research team that published "N-type Ca2+ channels carry the largest current: Implications for nanodomains and transmitter release," in Nature Neuroscience on Oct. 17, 2010. http://www.nature.com/neuro/journal/v13/n11/abs/nn.2657.html

Leading the project, Elise Stanley, PhD, a senior scientist at the Toronto Western Research Institute, said that Matveev's mathematical modeling showed that calcium influx through a single N-type calcium channel is sufficient to trigger the fusion of a secretory vesicle located 25 nm from the channel.

Explained Stanley: "These findings may help to explain why nature evolved this new family of channels, permitting an efficient transmitter release mechanism with a modular molecular organization. Our next objective will be to determine how this exquisitely organized 'molecular machine' plays a role in synaptic modulation which is critical for memory and behavior modification." Since transmitter release is involved in virtually every aspect of nervous system function, these results have a broad impact for the understanding of normal brain processing and central and peripheral nervous system disorders.

The results of this work showed that the calcium current through an N-type channel was larger in comparison to calcium channels that are not involved in synaptic transmission, contrary to the currently accepted channel conductance hierarchy.

Furthermore, the authors' modeling work showed that the current through a single open N-type calcium channel may be sufficient to enable neurotransmitter release. These results demonstrate the degree to which N-type calcium channel properties are adapted for their role in synaptic transmission, and also shed light on the highly localized nature of intra-synaptic calcium signaling.

Matveev's research focuses on computational neuroscience, primarily on biophysical modeling and numerical simulations of synaptic function and its mechanisms. He uses analytical methods and computational techniques, from stochastic modeling to numerical solution of partial and ordinary differential equations.

Matveev collaborates with experimental neurophysiologists, and develops models to explain and fit the experimental data. His current projects include the study of the mechanisms of short-term synaptic facilitation and other calcium-dependent processes involved in neurotransmitter secretion, and the modeling of presynaptic calcium diffusion and buffering.

To facilitate his research, Matveev also has been working on the development of a software application designed for solving the reaction-diffusion equation arising in the study of intracellular calcium dynamics ("Calcium Calculator").

Matveev received his doctorate in physics from SUNY, Stony Brook.

NJIT, New Jersey's science and technology university,enrolls more than 8,900 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2009 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Office of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>