Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH tools facilitate matching cancer drugs with gene targets

16.07.2012
A new study details how a suite of web-based tools provides the research community with greatly improved capacity to compare data derived from large collections of genomic information against thousands of drugs. By comparing drugs and genetic targets, researchers can more easily identify pharmaceuticals that could be effective against different forms of cancer.

The newly updated software, called CellMiner, was built for use with the NCI-60, one of the most widely utilized collections of cancer cell samples employed in the testing of potential anti-cancer drugs.


This is a cell plate with cell lines from the NCI-60. Credit: NIH/National Cancer Institute

The tools, available free, provide rapid access to data from 22,379 genes catalogued in the NCI-60 and from 20,503 previously analyzed chemical compounds, including 102 U.S. Food and Drug Administration-approved drugs.

The study, written by the scientists that developed the tools at the National Cancer Institute (NCI), part of the National Institutes of Health, appeared in the July 16, 2012, issue of Cancer Research.

"Previously you would have to hire a bioinformatics team to sort through all of the data, but these tools put the entire database at the fingertips of any researcher," explained Yves Pommier, M.D., Ph.D., of the NCI's Center for Cancer Research. "These tools allow researchers to analyze drug responses as well as make comparisons from drug to drug and gene to gene."

Genomic sequencing and analysis have become increasingly important in biomedicine, but they are yielding data sets so vast that researchers may find it difficult to access and compare them. As new technologies emerge and more data are generated, tools to facilitate the comparative study of genes and potentially promising drugs will be of even greater importance.

With the new tools, available at http://discover.nci.nih.gov/cellminer, researchers can compare patterns of drug activity and gene expression, not only to each other but also to other patterns of interest. CellMiner allows the input of large quantities of genomic and drug data, calculates correlations between genes and drug activity profiles, and identifies correlations that are statistically significant. Its data integration capacities are easier, faster, and more flexible than other available methods, and these tools can be adapted for use with other collections of data.

Researchers looking at a particular drug can use the tools to access data from previous experiments done on that drug and analyze how the drug relates to other drugs and various gene profiles. As a case example for this study, the researchers compared drug activity levels and gene expression patterns from previous research to identify an investigational compound, called NSC732298, which is not currently being studied for colon cancer, but could be a potential therapy for the disease based on a CellMiner gene-drug match. In the same exercise, the researchers were able to identify that a second investigational drug that is being tested for colon cancer, called selumetinib, might also be effective against melanoma.

"We're looking forward to seeing how other people are going to use this tool to look at gene co-regulation, regulation of gene expression, and the relationship between gene expression and cancer," said Pommier.

This work was supported by NCI's Center for Cancer Research and Division of Cancer Treatment and Diagnosis under intramural project number ZIA BC 006150.

NCI leads the National Cancer Program and the NIH effort to dramatically reduce the burden of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI Web site at www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference: Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, Doroshow J, and Pommier Y. Web-based genomic and pharmacologic tools for gene and microRNA transcript levels, drug activities, and their pattern comparisons across the NCI-60. Cancer Research. July 16, 2012.

NCI Press Office | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: Cancer CellMiner NCI NCI-60 NIH anti-cancer drug cancer drug colon cancer drug activity health services

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>