Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH takes step to assess any possible risk associated with low-dose radiation exposure

01.02.2010
Researchers at the National Institutes of Health (NIH) Clinical Center are incorporating radiation dose exposure reports into the electronic medical record, an effort that they hope will lead to an accurate assessment of whether any cancer risk is associated with low-dose radiation exposure from medical imaging tests, according to an article in the February issue of the Journal of the American College of Radiology (JACR). The electronic medical record allows for the storage, retrieval, and manipulation of one's medical records.

There is much controversy surrounding diagnostic medical radiation exposure. "One widely publicized appraisal of medical radiation exposure suggested that about 1.5 to 2 percent of all cancers in the USA might be caused by the clinical use of CT alone," said David A. Bluemke, MD, lead author of the article and director of Radiology and Imaging Sciences at the NIH Clinical Center.

"Since there is no epidemiologic data directly relating CT scanning to cancer deaths, scientific assessment must instead rely on the relationship between radiation exposure and death rates from Japanese atomic bomb survivors. While the legitimacy of this approach remains debated, radiologists as well as clinicians may rightfully be confused by the ongoing controversy. Patients seeking medical help may legitimately question the rationale of, and any risks from, diagnostic radiology tests," said Bluemke.

Radiology and nuclear medicine at the NIH Clinical Center have developed a radiation reporting policy that will be instituted in cooperation with major equipment vendors, beginning with exposures from CT and PET/CT. "All vendors who sell imaging equipment to Radiology and Imaging Sciences at the NIH Clinical Center will be required to provide a routine means for radiation dose exposure to be recorded in the electronic medical record. This requirement will allow cataloging of radiation exposures from these medical tests," said Bluemke. In addition, radiology at NIH will also require that vendors ensure that radiation exposure can be tracked by the patient in their own personal health record. This approach is consistent with the American College of Radiology's and Radiological Society of North America's stated recommendation, that "patients should keep a record of their X-ray history."

"The cancer risk from low-dose medical radiation tests is largely unknown. Yet it is clear that the U.S. population is increasingly being exposed to more diagnostic-test-derived ionizing radiation than in the past," said Bluemke.

"While these steps themselves are not sufficient to allow population-based assessment of cancer risk from low-dose radiation, they are nonetheless necessary to begin a data set for this determination. The accumulation of medical testing doses of hundreds of thousands of individuals in the United States over many years will ultimately be necessary. We encourage all medical imaging facilities to include similar requirements for radiation-dose-reporting outputs from the manufacturers of radiation-producing medical equipment," said Bluemke.

The February issue of JACR is an important resource for radiology and nuclear medicine professionals as well as students seeking clinical and educational improvement.

For more information about JACR, please visit www.jacr.org.

To receive an electronic copy of an article appearing in JACR or to set up an interview with a JACR author or another ACR member, please contact Heather Curry at 703-390-9822 or hcurry@acr-arrs.org.

Heather Curry | EurekAlert!
Further information:
http://www.acr-arrs.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>