Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists link quickly spreading gene to Asian MRSA epidemic

23.04.2012
National Institutes of Health (NIH) scientists and their colleagues in China have described a rapidly emerging Staphylococcus aureus gene, called sasX, which plays a pivotal role in establishing methicillin-resistant S. aureus (MRSA) epidemics in most of Asia.

Senior author Michael Otto, Ph.D., of NIH's National Institute of Allergy and Infectious Diseases, says these findings illustrate at the molecular level how MRSA epidemics may emerge and spread. Moreover, their study identifies a potential target for novel therapeutics.

MRSA is a leading cause of severe infections that occur predominantly in hospitals. MRSA epidemics happen in waves, with old clones of MRSA bacteria disappearing and new clones emerging, a process whose molecular underpinnings are not fully understood.

Previous data indicated that the sasX gene is extremely rare. Therefore, the researchers were surprised when they analyzed 807 patient samples of invasive S. aureus taken over the past decade from three Chinese hospitals. Their data showed that sasX is more prevalent in MRSA strains from China than previously thought, and the gene's frequency is increasing significantly: From 2003 to 2011, the percentage of MRSA samples containing sasX almost doubled, from 21 to 39 percent.

This finding suggests that the sasX gene is involved in molecular processes that help MRSA spread and cause disease. The researchers determined in laboratory and mouse studies that sasX helps bacteria to colonize in the nose, cause skin abscesses and lung disease, and evade human immune defenses. Further, the scientists say their work provides additional evidence for a long-held theory that the emergence of new clones of highly virulent MRSA bacteria occurs through horizontal gene transfer, the exchange of DNA between different strains. Notably, the sasX gene is embedded in a so-called mobile genetic element, a DNA segment that can transfer easily between strains.

Most sasX-positive samples found in the study were from the ST239 group, the predominant MRSA lineage in China and large parts of Asia. However, because the scientists have already observed the transfer of sasX to MRSA clones other than those belonging to the ST239 group, Dr. Otto and his team predict that the frequency of sasX will increase internationally. They plan to both monitor its spread and work to develop therapeutics to prevent MRSA strains expressing sasX from colonizing and infecting people.

Min Li, Ph.D., associate professor at Fudan University in Shanghai, a former postdoctoral fellow in Dr. Otto's laboratory, designed the study. Other collaborators are from the University of California, San Francisco.

ARTICLE:
M Li et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nature Medicine DOI: 10.1038/nm.2692 (2012).
WHO:
Michael Otto, Ph.D., senior investigator, Laboratory of Human Bacterial Pathogenesis, NIAID. Dr. Otto is an expert in the molecular basis of pathogenesis in staphylococci.
CONTACT:
To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

Further reports about: DNA Human vaccine Infectious Diseases MRSA NIAID NIH ST239 health services medical research

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>