Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIH scientists link quickly spreading gene to Asian MRSA epidemic

National Institutes of Health (NIH) scientists and their colleagues in China have described a rapidly emerging Staphylococcus aureus gene, called sasX, which plays a pivotal role in establishing methicillin-resistant S. aureus (MRSA) epidemics in most of Asia.

Senior author Michael Otto, Ph.D., of NIH's National Institute of Allergy and Infectious Diseases, says these findings illustrate at the molecular level how MRSA epidemics may emerge and spread. Moreover, their study identifies a potential target for novel therapeutics.

MRSA is a leading cause of severe infections that occur predominantly in hospitals. MRSA epidemics happen in waves, with old clones of MRSA bacteria disappearing and new clones emerging, a process whose molecular underpinnings are not fully understood.

Previous data indicated that the sasX gene is extremely rare. Therefore, the researchers were surprised when they analyzed 807 patient samples of invasive S. aureus taken over the past decade from three Chinese hospitals. Their data showed that sasX is more prevalent in MRSA strains from China than previously thought, and the gene's frequency is increasing significantly: From 2003 to 2011, the percentage of MRSA samples containing sasX almost doubled, from 21 to 39 percent.

This finding suggests that the sasX gene is involved in molecular processes that help MRSA spread and cause disease. The researchers determined in laboratory and mouse studies that sasX helps bacteria to colonize in the nose, cause skin abscesses and lung disease, and evade human immune defenses. Further, the scientists say their work provides additional evidence for a long-held theory that the emergence of new clones of highly virulent MRSA bacteria occurs through horizontal gene transfer, the exchange of DNA between different strains. Notably, the sasX gene is embedded in a so-called mobile genetic element, a DNA segment that can transfer easily between strains.

Most sasX-positive samples found in the study were from the ST239 group, the predominant MRSA lineage in China and large parts of Asia. However, because the scientists have already observed the transfer of sasX to MRSA clones other than those belonging to the ST239 group, Dr. Otto and his team predict that the frequency of sasX will increase internationally. They plan to both monitor its spread and work to develop therapeutics to prevent MRSA strains expressing sasX from colonizing and infecting people.

Min Li, Ph.D., associate professor at Fudan University in Shanghai, a former postdoctoral fellow in Dr. Otto's laboratory, designed the study. Other collaborators are from the University of California, San Francisco.

M Li et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nature Medicine DOI: 10.1038/nm.2692 (2012).
Michael Otto, Ph.D., senior investigator, Laboratory of Human Bacterial Pathogenesis, NIAID. Dr. Otto is an expert in the molecular basis of pathogenesis in staphylococci.
To schedule interviews, please contact Ken Pekoc, (301) 402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIH...Turning Discovery Into Health

Ken Pekoc | EurekAlert!
Further information:

Further reports about: DNA Human vaccine Infectious Diseases MRSA NIAID NIH ST239 health services medical research

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>