Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists find earliest known evidence of 1918 influenza pandemic

20.09.2011
Examination of lung tissue and other autopsy material from 68 American soldiers who died of respiratory infections in 1918 has revealed that the influenza virus that eventually killed 50 million people worldwide was circulating in the United States at least four months before the 1918 influenza reached pandemic levels that fall.

The study, using tissues preserved since 1918, was led by Jeffery K. Taubenberger, M.D., Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The researchers found proteins and genetic material from the 1918 influenza virus in specimens from 37 of the soldiers, including four who died between May and August 1918, months before the pandemic peaked. These four cases are the earliest 1918 pandemic influenza cases they know to be documented anywhere in the world, the scientists say.

The clinical disease and tissue damage seen in the pre-pandemic cases were indistinguishable from those evident in cases that occurred during the height of the pandemic. This suggests, says Dr. Taubenberger, that over the course of the pandemic, the virus did not undergo a dramatic change that could explain the unusually high mortality it ultimately caused.

In the current study, the autopsy materials showed that the virus replicated not only in the upper respiratory tract but also the lower respiratory tract, in a pattern very similar to that of the 2009 pandemic influenza virus. The team also found evidence that two virus variants were circulating in 1918. In one, a key viral protein called hemagglutinin bound well to receptors on human respiratory cells, while the hemagglutinin from the other variant bound less efficiently. Despite this difference in binding ability, both viruses caused similar disease symptoms and replicated in a similar pattern within cells lining the respiratory tract, suggesting that differences in hemagglutinin binding capacity alone do not fully explain the unusually high mortality seen in the 1918 pandemic.

Bacterial co-infections were found in all 68 cases studied, the researchers noted. The role played by bacterial co-infections, such as bacterial pneumonia, in contributing to deaths in the 1918 pandemic was previously described by Dr. Taubenberger and his colleagues in a 2008 study. According to the study authors, the new data underscore the crucial role that bacterial infections can play in conjunction with any influenza virus, whether historic or future, and the need for public health officials to prepare to prevent, detect and treat bacterial co-infections during future influenza outbreaks.

ARTICLE: Z-M Sheng et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proceedings of the National Academies of Sciences DOI: 10.1073/pnas.1111179108 (2011).

Study co-authors Jeffery K. Taubenberger, M.D., Ph.D., Laboratory of Infectious Diseases, NIAID, and David M. Morens, M.D., Office of the Director, NIAID, are available to provide comment.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>