Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists find earliest known evidence of 1918 influenza pandemic

20.09.2011
Examination of lung tissue and other autopsy material from 68 American soldiers who died of respiratory infections in 1918 has revealed that the influenza virus that eventually killed 50 million people worldwide was circulating in the United States at least four months before the 1918 influenza reached pandemic levels that fall.

The study, using tissues preserved since 1918, was led by Jeffery K. Taubenberger, M.D., Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The researchers found proteins and genetic material from the 1918 influenza virus in specimens from 37 of the soldiers, including four who died between May and August 1918, months before the pandemic peaked. These four cases are the earliest 1918 pandemic influenza cases they know to be documented anywhere in the world, the scientists say.

The clinical disease and tissue damage seen in the pre-pandemic cases were indistinguishable from those evident in cases that occurred during the height of the pandemic. This suggests, says Dr. Taubenberger, that over the course of the pandemic, the virus did not undergo a dramatic change that could explain the unusually high mortality it ultimately caused.

In the current study, the autopsy materials showed that the virus replicated not only in the upper respiratory tract but also the lower respiratory tract, in a pattern very similar to that of the 2009 pandemic influenza virus. The team also found evidence that two virus variants were circulating in 1918. In one, a key viral protein called hemagglutinin bound well to receptors on human respiratory cells, while the hemagglutinin from the other variant bound less efficiently. Despite this difference in binding ability, both viruses caused similar disease symptoms and replicated in a similar pattern within cells lining the respiratory tract, suggesting that differences in hemagglutinin binding capacity alone do not fully explain the unusually high mortality seen in the 1918 pandemic.

Bacterial co-infections were found in all 68 cases studied, the researchers noted. The role played by bacterial co-infections, such as bacterial pneumonia, in contributing to deaths in the 1918 pandemic was previously described by Dr. Taubenberger and his colleagues in a 2008 study. According to the study authors, the new data underscore the crucial role that bacterial infections can play in conjunction with any influenza virus, whether historic or future, and the need for public health officials to prepare to prevent, detect and treat bacterial co-infections during future influenza outbreaks.

ARTICLE: Z-M Sheng et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proceedings of the National Academies of Sciences DOI: 10.1073/pnas.1111179108 (2011).

Study co-authors Jeffery K. Taubenberger, M.D., Ph.D., Laboratory of Infectious Diseases, NIAID, and David M. Morens, M.D., Office of the Director, NIAID, are available to provide comment.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>