Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH-created toxin can kill HIV-infected cells that persist despite treatment

10.01.2014
Approach could potentially be part of future HIV cure strategy

A team including University of North Carolina and NIH scientists has demonstrated in a mouse model that an HIV-specific poison can kill cells in which the virus is actively reproducing despite antiretroviral therapy. According to the researchers, such a targeted poison could complement antiretroviral therapy, which dramatically reduces the replication of HIV in infected cells but does not eliminate them.

The 40 mice in the experiment were bioengineered to have a human immune system. They were infected with HIV for several months and then given a combination of antiretroviral drugs for four weeks. Half of the animals subsequently received a two-week dose of a genetically designed, HIV-specific poison, or immunotoxin, to complement the antiretrovirals, while the other half continued receiving antiretrovirals alone. The scientists found that, compared to antiretrovirals alone, the addition of the immunotoxin significantly reduced both the number of HIV-infected cells producing the virus in multiple organs and the level of HIV in the blood.

According to the researchers, these findings, coupled with results from previous studies, suggest that treating certain HIV-infected people with a combination of antiretrovirals and an immunotoxin might help achieve sustained disease remission, in which HIV can be controlled or eliminated without a lifetime of antiretroviral therapy. However, further study is required, the scientists write.

The immunotoxin, known as 3B3-PE38, was created in 1998 in the laboratories of Edward A. Berger, Ph.D., of the National Institute of Allergy and Infectious Diseases, and Ira Pastan, Ph.D., of the National Cancer Institute, both part of NIH. This genetically modified bacterial toxin targets HIV-infected cells and becomes internalized by them, shutting down protein synthesis and triggering cell death. The study was designed by Drs. Berger and Pastan in collaboration with J. Victor Garcia, Ph.D., and colleagues at the University of North Carolina School of Medicine, where the experiments were performed.

ARTICLE: PW Denton et al. Targeted cytotoxic therapy kills persisting HIV-infected cells during ART. PLOS Pathogens DOI: ppat.1003872 (2014).

NIAID Director Anthony S. Fauci, M.D., and Edward A. Berger, Ph.D., senior investigator in the NIAID Laboratory of Viral Diseases, are available for comment.

CONTACT: To schedule interviews, please contact Laura S. Leifman, (301) 402-1663, sivitzl@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.

NIH...Turning Discovery Into Health®

aura S. Leifman | EurekAlert!
Further information:
http://www.nih.gov/
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>