Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine receptors found for the first time in the mouth open the door to new treatments

20.01.2009
* Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

A research team by scientists in Portugal and the US has found for the first time nicotine receptors in the taste buds. In fact, although most of the toxicity of smoking is linked to other components, it is nicotine that leads to smoking addiction and until now it was believed that this substance had to migrate into the brain – where its specific receptors existed - to provoke its effects.

This new discovery published in the Proceedings of the National Academy of Sciences (PNAS) reveals a second recognition pathway most probably contributing for addiction and suggesting a possible new target for anti-smoking drugs. The added bonus is that on this route the drugs can be applied topically (on the tongue), drastically reducing their side effects. This novel pathway is also shown to activate a brain area that when damaged can lead to instant loss of smoking addiction suggesting that mouth nicotine receptors can play a key role in the whole dependence process.

Tobacco addiction produces devastating health problems including high number of premature deaths in long-term smokers, half of these occurring as early as middle age. Specific problems include cardiovascular diseases and cancer, but also increased risk of infection such as tuberculosis, insulin resistance and diabetes, healing difficulties as well as reproductive problems and can even lead to infertility. Despite this, just in the United States, 45 million adults smoke and even if numbers are slowly diminishing in developed countries, rates continue to increase in developing countries where as much as 40% of the population can smoke. This while we know that, at least in developed countries, a large percentage of these smokers want to give up but is simply incapable of doing it.

This irresistible power of tobacco, or more exactly, of nicotine, resides in its effect on the brain. Smoke inhalation results in nicotine being transported into the lung from where it enters the blood circulation and is carried into the brain. There it binds nicotinic cholinergic receptors (nAChRs) and ultimately leads to the release of “feel good” neurotransmitters, such as dopamine. The problem is that long-term exposure to nicotine leads to an increased number of nicotine receptors in the brain and eventually tolerance to dopamine. This means that when we stop smoking other stimulus are not sufficient to produce enough dopamine to induce sensations of pleasure, and a general state of “unhappiness” - so well known to those trying to stop the habit – occurs. Withdrawal symptoms include restlessness, anxiety, concentration problems and, of course, a constant craving for tobacco.

Other factors such as culture or even habits of association such as “a coffee and a cigarette” contribute to the whole pattern of addiction. Drugs to combat smoke addiction interfere with the nicotine receptors in the brain, while slowly desensitising the individual to dopamine but, not only they carry a multitude of side effects, such as severe depression, but also have reduced success rates with only about 20% of people remaining smoke-free on the long-term. Recently, widespread prohibition of smoking in public spaces was hoped to affect smoking numbers but results, so far, are not very promising highlighting the urgency for new strategies to combat the problem.

It is in this context that Albino J. Oliveira-Maia, Jennifer R. Stapleton-Kotloski, Miguel A. L. Nicolelis, Sidney A. Simon and colleagues at the Medicine Faculty and the Institute of Cellular and Molecular Biology in the University of Porto, Portugal; Virginia Commonwealth University, Virginia, USA; Duke University Medical Center, North Carolina, USA; and the Edmond and Lily Safra International Institute for Neuroscience of Natal, Rio Grande do Norte, Brazil, decided to look into a recently described mouse lacking a protein - called TRPM5 - linked to the recognition of bitter tastes (nicotine is known to be bitter) since previous research have suggested that taste is important for tobacco addiction. In fact individuals with an extreme capacity to taste bitterness are more resistant to smoke addiction, while lesions to the insula – a brain area where the gustatory cortex is localised – can affect smoking addiction.

To the researchers’ surprise, when comparing normal animals against animals lacking TRPM5 in the presence of nicotine and quinine (that also has a bitter taste) solutions, it was discovered that, although incapable of tasting bitter tastes, Trpm5 negative animals could still distinguish nicotine from water and, more surprisingly, also from quinine. These results suggested a second pathway of recognition- which is TRPM5 and taste independent - for nicotine in the mouth.

And in fact, further studies in rats revealed the existence of nicotine receptors in the Taste Receptor Cells and taste nerves of the mouth, which, when triggered by nicotine, activated the gustatory cortex with a very different neural pattern from the one obtained by the recognition of pure bitter taste, like in quinine case. However, when nicotinic cholinergic receptors (nAChRs) inhibitors – used to stop smoking - were put on the tongue, both the behavioural and neural effects of nicotine became similar to those obtained with quinine.

What Oliveira-Maia, Simon and colleagues’ results reveal is that nicotine stimulates two systems in the mouth, one related to TRPM5, which is also used to recognise other bitter substances such as quinine, and a second one apparently specific for nicotine and Trpm5 independent. This last recognition system leads to an unique neural activation pattern of the gustatory cortex probably linked to nicotine addiction. The clue to this resides in the fact that damage in the brain insula area – where the gustatory cortex is – can eliminate any addiction to tobacco even in chronic smokers using several packets a day just before the injury. If the mouth nicotine receptors are confirmed to be linked with these insula effects, blocking them can turn out to be "the" weapon against smoking.

Either way, Oliveira-Maia and colleagues’ discovery raises the possibility of, not only using anti-smoking drugs topically avoiding in this way many of the side effects seen when the drugs are used sistemically, but also, by creating a second front of attack, contributing to more efficient anti-smoking therapies crucial in a world where smoking still kills more than 5 million people a year worldwide.

Piece by Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.pnas.org/

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>