Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine receptors found for the first time in the mouth open the door to new treatments

20.01.2009
* Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

A research team by scientists in Portugal and the US has found for the first time nicotine receptors in the taste buds. In fact, although most of the toxicity of smoking is linked to other components, it is nicotine that leads to smoking addiction and until now it was believed that this substance had to migrate into the brain – where its specific receptors existed - to provoke its effects.

This new discovery published in the Proceedings of the National Academy of Sciences (PNAS) reveals a second recognition pathway most probably contributing for addiction and suggesting a possible new target for anti-smoking drugs. The added bonus is that on this route the drugs can be applied topically (on the tongue), drastically reducing their side effects. This novel pathway is also shown to activate a brain area that when damaged can lead to instant loss of smoking addiction suggesting that mouth nicotine receptors can play a key role in the whole dependence process.

Tobacco addiction produces devastating health problems including high number of premature deaths in long-term smokers, half of these occurring as early as middle age. Specific problems include cardiovascular diseases and cancer, but also increased risk of infection such as tuberculosis, insulin resistance and diabetes, healing difficulties as well as reproductive problems and can even lead to infertility. Despite this, just in the United States, 45 million adults smoke and even if numbers are slowly diminishing in developed countries, rates continue to increase in developing countries where as much as 40% of the population can smoke. This while we know that, at least in developed countries, a large percentage of these smokers want to give up but is simply incapable of doing it.

This irresistible power of tobacco, or more exactly, of nicotine, resides in its effect on the brain. Smoke inhalation results in nicotine being transported into the lung from where it enters the blood circulation and is carried into the brain. There it binds nicotinic cholinergic receptors (nAChRs) and ultimately leads to the release of “feel good” neurotransmitters, such as dopamine. The problem is that long-term exposure to nicotine leads to an increased number of nicotine receptors in the brain and eventually tolerance to dopamine. This means that when we stop smoking other stimulus are not sufficient to produce enough dopamine to induce sensations of pleasure, and a general state of “unhappiness” - so well known to those trying to stop the habit – occurs. Withdrawal symptoms include restlessness, anxiety, concentration problems and, of course, a constant craving for tobacco.

Other factors such as culture or even habits of association such as “a coffee and a cigarette” contribute to the whole pattern of addiction. Drugs to combat smoke addiction interfere with the nicotine receptors in the brain, while slowly desensitising the individual to dopamine but, not only they carry a multitude of side effects, such as severe depression, but also have reduced success rates with only about 20% of people remaining smoke-free on the long-term. Recently, widespread prohibition of smoking in public spaces was hoped to affect smoking numbers but results, so far, are not very promising highlighting the urgency for new strategies to combat the problem.

It is in this context that Albino J. Oliveira-Maia, Jennifer R. Stapleton-Kotloski, Miguel A. L. Nicolelis, Sidney A. Simon and colleagues at the Medicine Faculty and the Institute of Cellular and Molecular Biology in the University of Porto, Portugal; Virginia Commonwealth University, Virginia, USA; Duke University Medical Center, North Carolina, USA; and the Edmond and Lily Safra International Institute for Neuroscience of Natal, Rio Grande do Norte, Brazil, decided to look into a recently described mouse lacking a protein - called TRPM5 - linked to the recognition of bitter tastes (nicotine is known to be bitter) since previous research have suggested that taste is important for tobacco addiction. In fact individuals with an extreme capacity to taste bitterness are more resistant to smoke addiction, while lesions to the insula – a brain area where the gustatory cortex is localised – can affect smoking addiction.

To the researchers’ surprise, when comparing normal animals against animals lacking TRPM5 in the presence of nicotine and quinine (that also has a bitter taste) solutions, it was discovered that, although incapable of tasting bitter tastes, Trpm5 negative animals could still distinguish nicotine from water and, more surprisingly, also from quinine. These results suggested a second pathway of recognition- which is TRPM5 and taste independent - for nicotine in the mouth.

And in fact, further studies in rats revealed the existence of nicotine receptors in the Taste Receptor Cells and taste nerves of the mouth, which, when triggered by nicotine, activated the gustatory cortex with a very different neural pattern from the one obtained by the recognition of pure bitter taste, like in quinine case. However, when nicotinic cholinergic receptors (nAChRs) inhibitors – used to stop smoking - were put on the tongue, both the behavioural and neural effects of nicotine became similar to those obtained with quinine.

What Oliveira-Maia, Simon and colleagues’ results reveal is that nicotine stimulates two systems in the mouth, one related to TRPM5, which is also used to recognise other bitter substances such as quinine, and a second one apparently specific for nicotine and Trpm5 independent. This last recognition system leads to an unique neural activation pattern of the gustatory cortex probably linked to nicotine addiction. The clue to this resides in the fact that damage in the brain insula area – where the gustatory cortex is – can eliminate any addiction to tobacco even in chronic smokers using several packets a day just before the injury. If the mouth nicotine receptors are confirmed to be linked with these insula effects, blocking them can turn out to be "the" weapon against smoking.

Either way, Oliveira-Maia and colleagues’ discovery raises the possibility of, not only using anti-smoking drugs topically avoiding in this way many of the side effects seen when the drugs are used sistemically, but also, by creating a second front of attack, contributing to more efficient anti-smoking therapies crucial in a world where smoking still kills more than 5 million people a year worldwide.

Piece by Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.pnas.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>