Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered 'multicomponent' virus can infect animals

26.08.2016

Scientists have identified a new "multicomponent" virus -- one containing different segments of genetic material in separate particles -- that can infect animals, according to research published today in the journal Cell Host & Microbe.

This new pathogen, called Guaico Culex virus (GCXV), was isolated from several species of mosquitoes in Central and South America. GCXV does not appear to infect mammals, according to first author Jason Ladner, Ph.D., of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). However, the team also isolated a related virus -- called Jingmen tick virus, or JMTV -- from a nonhuman primate. Further analysis demonstrates that both GCXV and JMTV belong to a highly diverse and newly discovered group of viruses called the Jingmenvirus group.


Multicomponent viruses, which separately package different genome segments, were thought to be restricted to plant and fungal hosts. Ladner et al. characterize a multicomponent mosquito virus and describe an evolutionarily-related, segmented virus in a non-human primate. These findings provide evidence for multicomponent animal viruses and suggest relevance to animal health. Photo depicts the presence of different viral RNA segments within infected cells.

Credit: Michael Lindquist, USAMRIID (US Army Medical Research Institute of Infectious Diseases)

Taken together, the research suggests that the host range of this virus group is quite diverse--and highlights the potential relevance of these viruses to animal and human health.

"Animal viruses typically have all genome segments packaged together into a single viral particle, so only one of those particles is needed to infect a host cell," Ladner explained. "But in a multicomponent virus, the genome is divided into multiple pieces, with each one packaged separately into a viral particle. At least one particle of each type is required for cell infection."

Several plant pathogens have this type of organization, but the study published today is the first to describe a multicomponent virus that infects animals.

Working with collaborators including the University of Texas Medical Branch and the New York State Department of Health, the USAMRIID team extracted and sequenced virus from mosquitoes collected around the world. The newly discovered virus is named for the Guaico region of Trinidad, where the mosquitoes that contained it were first found.

In collaboration with a group at the University of Wisconsin-Madison, the USAMRIID investigators also found the first evidence of a Jingmenvirus in the blood of a nonhuman primate, in this case a red colobus monkey living in Kibale National Park, Uganda. The animal showed no signs of disease when the sample was taken, so it is not known whether the virus had a pathogenic effect.

Jingmenviruses were first described in 2014 and are related to flaviviruses -- a large family of viruses that includes human pathogens such as yellow fever, West Nile and Japanese encephalitis viruses.

"One area we are focused on is the identification and characterization of novel viruses," said the paper's senior author Gustavo Palacios, Ph.D., who directs USAMRIID's Center for Genome Sciences. "This study allowed us to utilize all our tools--and even though this virus does not appear to affect mammals, we are continuing to refine those tools so we can be better prepared for the next outbreak of disease that could have an impact on human health."

While it is difficult to predict, experts believe that the infectious viruses most likely to emerge next in humans are those already affecting other mammals, particularly nonhuman primates.

###

This research was supported by the Defense Threat Reduction Agency, the National Institutes of Health, the James W. McLaughlin endowment fund, a Smithsonian Tropical Research Institute-Environmental Protection Agency grant, and a Robert E. Shope fellowship.

USAMRIID's mission is to provide leading edge medical capabilities to deter and defend against current and emerging biological threat agents. Research conducted at USAMRIID leads to medical solutions--vaccines, drugs, diagnostics, and information--that benefit both military personnel and civilians. The Institute plays a key role as the lead military medical research laboratory for the Defense Threat Reduction Agency's Joint Science and Technology Office for Chemical and Biological Defense. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit http://www.usamriid.army.mil

Reference: Cell Host & Microbe, Ladner et al: "A Multicomponent Animal Virus Isolated from Mosquitoes" http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(16)30310-9 / http://dx.doi.org/10.1016/j.chom.2016.07.011

Media Contact

Caree Vander Linden
teresa.l.vanderlinden.civ@mail.mil
301-619-2285

http://www.usamriid.army.mil 

Caree Vander Linden | EurekAlert!

Further reports about: Infectious Diseases human health infect mosquitoes primate viruses

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>