Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered cell mechanism uses amplified nitric oxide to fight C. diff

23.08.2011
Research involving Case Western Reserve featured in the Aug. 21 online issue of Nature Medicine

Groundbreaking research encompassing Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, has uncovered a natural defense mechanism that is capable of inactivating the toxin that spreads Clostridium difficile, or C. diff, an increasingly common bacterial infection in hospitals and long-term care settings. The research has immediate implications for developing a new form of treatment for antibiotic-resistant bacteria.

The newly discovered mechanism involves a nitric oxide (NO)-based molecule, S-nitrosoglutathione (GSNO), which binds to the toxins secreted by C. diff bacteria to deactivate them and prevent them from penetrating and damaging cells. The mechanism encompasses S-nitrosylation (SNO), a protein modification that attaches NO to cysteine residues in enzymes and other proteins.

"We've discovered a natural defense against C. diff that is based on nitric oxide, a ubiquitous molecule that is often produced by immune cells to kill pathogens," says Jonathan Stamler, MD, director of the Institute for Transformative Molecular Medicine and the Robert S. and Sylvia K. Reitman Family Foundation Distinguished Chair in Cardiovascular Innovation at the Case Western Reserve University Cardiovascular Center and University Hospitals Harrington-McLaughlin Heart & Vascular Institute. "Understanding how this mechanism deactivates toxins provides a basis for developing new therapies that can target toxins directly and thereby keep bacterial infections, like C. diff, from spreading," he says.

Dr. Stamler discovered the molecule GSNO, as well as the nitrosylation mechanism for control of protein function, in his previous research. He is one of the senior investigators studying how the protein modification inhibits the virulence of C. diff toxins. The resulting research findings appear in the Aug. 21 online issue of Nature Medicine.

In addition to Dr. Stamler, investigators from the University of Texas in Galveston, the University of California, Tufts University and the Commonwealth Medical College collaborated on the research. The University of Texas researchers first determined that NO helped protect cells against C. diff and approached Dr. Stamler to determine if SNO was also involved.

C. diff is the most common cause of hospital-acquired infectious diarrhea and life-threatening inflammation of the colon. It originates when normal, competing bacteria in the gastrointestinal tract are wiped out by the use of antibiotics. This allows C. diff bacteria to grow out of control.

The C. diff bacteria secrete a toxin that cleaves or cuts itself to generate a fragment that can penetrate cells, damaging them and resulting in a hemorrhagic injury to the gastrointestinal tract. The toxin is activated when inositolhexakisphosphate (InsP6), a substance prevalent in leafy vegetables and the gastrointestinal tract, binds to it, enabling the toxin to change shape and cleave itself.

The research shows that upon activation, GSNO, a NO donor molecule, binds to the toxin and nitrosylates it. This can only occur when InsP6 binds to the toxin.

The change in shape that results when InsP6 binds to the toxin is what enables the GSNO to target and inactivate the toxin by directly binding to the active site. There, the GSNO can nitrosylate (SNO) the cysteine to inactivate the toxin. These findings are especially significant as they suggest that GSNO has evolved to recognize shape changes in the toxins it targets.

Prior to this, researchers knew GSNO could produce SNO in many classes of proteins but there was little to no precedent for it binding to toxins or explaining how this SNO modification protects against infectious agents, Dr. Stamler says.

"The new research suggests GSNO, and S-nitrosylation, more generally, may have a universal function in protecting cells against microbial proteins, many of which have a design that is conducive to being s-nitrosylated by GSNO," Dr. Stamler says. "In this regard, GSNO-like molecules may represent a new class of antibiotics that can be developed, exploiting the shape changes in numerous bacterial proteins."

In their work, researchers also noted that increased levels of GSNO in the gut of C. diff-infected animals and increased levels of SNO-toxin in stools of patients, directly correlated with deactivation of the toxin, further confirming that the natural mechanism works to reduce disease activity in people. This provides a basis for measuring how much nitric oxide, a key molecule in cell immune activity, has bound to toxins to make SNO and limit the spread of bacteria.

The current treatment of C. diff is difficult and the infection often recurs. Resistance to antibiotics is also a serious worry. The researchers are currently developing a new class of anti-toxin treatment based on these findings. One advantage of such antitoxins, says Dr. Stamler, is that resistance won't occur. The researchers hope that the new treatment can enter clinical trials very rapidly.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>