Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Heart Muscle Can Grow Back by Itself

28.02.2011
In a promising science-fiction-meets-real-world juxtaposition, researchers at UT Southwestern Medical Center have discovered that the mammalian newborn heart can heal itself completely.

Researchers, working with mice, found that a portion of the heart removed during the first week after birth grew back wholly and correctly – as if nothing had happened.

“This is an important step in our search for a cure for heart disease, the No. 1 killer in the developed world,” said Dr. Hesham Sadek, assistant professor of internal medicine and senior author of the study available online in the Feb. 25 issue of Science. “We found that the heart of newborn mammals can fix itself; it just forgets how as it gets older. The challenge now is to find a way to remind the adult heart how to fix itself again.”

Previous research has demonstrated that the lower organisms, like some fish and amphibians, that can regrow fins and tails, can also regrow portions of their hearts after injury.

“In contrast, the hearts of adult mammals lack the ability to regrow lost or damaged tissue, and as a result, when the heart is injured, for example after a heart attack, it gets weaker, which eventually leads to heart failure,” Dr. Sadek said.

The researchers found that within three weeks of removing 15 percent of the newborn mouse heart, the heart was able to completely grow back the lost tissue, and as a result looked and functioned just like a normal heart. The researchers believe that uninjured beating heart cells, called cardiomyocytes, are a major source of the new cells. They stop beating long enough to divide and provide the heart with fresh cardiomyocytes.

Dr. Eric Olson, chairman of molecular biology and co-senior author of the study, said that this work is fascinating.

“The inability of the adult heart to regenerate following injury represents a major barrier in cardiovascular medicine,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology. “This work demonstrates that cardiac regeneration is possible in the mammalian heart during a window of time after birth, but this regenerative ability is then lost. Armed with this knowledge, we can next work to discover methods to reawaken cardiac regeneration in adulthood.”

The next step, the researchers said, is to study this brief window when the heart is still capable of regeneration, and to find out how, and why, the heart “turns off” this remarkable ability to regenerate as it grows older.

Other UT Southwestern researchers involved in the study were Dr. Enzo Porrello, postdoctoral research fellow in molecular biology and the paper’s lead author; Ahmed Mahmoud, graduate research assistant in internal medicine; Emma Simpson, research assistant in pathology; Dr. Joseph Hill, chief of cardiology; and Dr. James Richardson, professor of pathology and molecular biology.

The study was funded by the National Health and Medical Research Council, the National Heart Foundation of Australia and the American Heart Association.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>