Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Heart Muscle Can Grow Back by Itself

28.02.2011
In a promising science-fiction-meets-real-world juxtaposition, researchers at UT Southwestern Medical Center have discovered that the mammalian newborn heart can heal itself completely.

Researchers, working with mice, found that a portion of the heart removed during the first week after birth grew back wholly and correctly – as if nothing had happened.

“This is an important step in our search for a cure for heart disease, the No. 1 killer in the developed world,” said Dr. Hesham Sadek, assistant professor of internal medicine and senior author of the study available online in the Feb. 25 issue of Science. “We found that the heart of newborn mammals can fix itself; it just forgets how as it gets older. The challenge now is to find a way to remind the adult heart how to fix itself again.”

Previous research has demonstrated that the lower organisms, like some fish and amphibians, that can regrow fins and tails, can also regrow portions of their hearts after injury.

“In contrast, the hearts of adult mammals lack the ability to regrow lost or damaged tissue, and as a result, when the heart is injured, for example after a heart attack, it gets weaker, which eventually leads to heart failure,” Dr. Sadek said.

The researchers found that within three weeks of removing 15 percent of the newborn mouse heart, the heart was able to completely grow back the lost tissue, and as a result looked and functioned just like a normal heart. The researchers believe that uninjured beating heart cells, called cardiomyocytes, are a major source of the new cells. They stop beating long enough to divide and provide the heart with fresh cardiomyocytes.

Dr. Eric Olson, chairman of molecular biology and co-senior author of the study, said that this work is fascinating.

“The inability of the adult heart to regenerate following injury represents a major barrier in cardiovascular medicine,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology. “This work demonstrates that cardiac regeneration is possible in the mammalian heart during a window of time after birth, but this regenerative ability is then lost. Armed with this knowledge, we can next work to discover methods to reawaken cardiac regeneration in adulthood.”

The next step, the researchers said, is to study this brief window when the heart is still capable of regeneration, and to find out how, and why, the heart “turns off” this remarkable ability to regenerate as it grows older.

Other UT Southwestern researchers involved in the study were Dr. Enzo Porrello, postdoctoral research fellow in molecular biology and the paper’s lead author; Ahmed Mahmoud, graduate research assistant in internal medicine; Emma Simpson, research assistant in pathology; Dr. Joseph Hill, chief of cardiology; and Dr. James Richardson, professor of pathology and molecular biology.

The study was funded by the National Health and Medical Research Council, the National Heart Foundation of Australia and the American Heart Association.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>