Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic target discovered for Alzheimer's disease

18.03.2014

Drug candidate blocks production of disease-causing neurotoxins in mouse models

A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocks creation of key neurotoxic pGlu-Aβ peptides linked to Alzheimer's disease (AD). Moreover, the candidate inhibitor drug has been shown to be safe in humans.

The findings, based on AD mouse models and published online in the Journal of Alzheimer's Disease, support continued development of cysteine protease inhibitors as a new drug target class for AD. "No other therapeutic program is investigating cysteine protease inhibitors for treating AD," said collaborator Vivian Hook, PhD, professor in the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and in the UC San Diego School of Medicine.

Current AD drugs treat some symptoms of the devastating neurological disorder, but none actually slow its progress, prevent or cure it. No new AD drug has been approved in more than a decade.

The researchers focused on cathepsin B production of N-truncated pGlu-Aβ, a peptide or short chain of amino acids, and the blockade of cathepsin B by E64d, a compound shown to inhibit cysteine proteases, a type of enzyme. AD is characterized by accumulation of a variety of Aβ peptides as oligomers and amyloid plaques in the brain, factors involved in neuronal loss and memory deficits over time. These neurotoxic Aβ peptides are created when enzymes cleave a large protein called amyloid precursor protein (APP) into smaller Aβ peptides of varying toxicity. N-truncated pGlu-Aβ has been shown to be among the most neurotoxic of multiple forms of Aβ peptides.

Much AD research has focused on the APP-cutting enzyme BACE1 β-secretase, but its role in producing pGlu-Aβ was unknown. Cathepsin B is an alternative β-secretase which cleaves the wild-type β-secretase site of APP, which is expressed in the major sporadic and many familial forms of AD. Hook and colleagues looked at what happened after gene knockout of BACE1 or cathepsin B. They found that cathepsin B, but not BACE1, produced the highly toxic pGlu-Aβ.

Perhaps most interestingly, the scientists found that E64d, an enzyme inhibitor of cathepsin B, reduced production of pGlu-Aβ and other AD-associated Aβ peptides. Key was the finding that E64d and cathepsin B gene knock out resulted in improved memory deficits in a mouse model of AD.

"This is an exciting finding," said Hook. "It addresses a new target – cathepsin B – and an effective, safe small molecule, E64d, to reduce the pGlu-Aβ that initiates development of the disease's neurotoxicity. No other work in the field has addressed protease inhibition for reducing pGlu-Aβ of AD."

Hook noted that E64d has already been shown to be safe in clinical trials of patients with muscular dystrophy and would, therefore, likely prove safe for treating AD as well. She hopes to launch Phase 1 human clinical trials in the near future with a modified version of the drug candidate.

###

Co-authors include Gregory Hook, American Life Science Pharmaceuticals, Inc.; Jin Yu and Mark Kindy, Medical University of South Carolina; and Thomas Toneff, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences.

Funding for this research came, in part, from the National Institutes of Health (grants R44AG032784, R01ES016774-02 and R21AG0428), a Veteran's Affairs Merit Review grant, and an Alzheimer's Association award.

Disclosure: Vivian Hook is chair of American Life Science Pharmaceuticals' scientific advisory board and holds equity in the company.

Scott LaFee | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>