Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic target discovered for Alzheimer's disease

18.03.2014

Drug candidate blocks production of disease-causing neurotoxins in mouse models

A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocks creation of key neurotoxic pGlu-Aβ peptides linked to Alzheimer's disease (AD). Moreover, the candidate inhibitor drug has been shown to be safe in humans.

The findings, based on AD mouse models and published online in the Journal of Alzheimer's Disease, support continued development of cysteine protease inhibitors as a new drug target class for AD. "No other therapeutic program is investigating cysteine protease inhibitors for treating AD," said collaborator Vivian Hook, PhD, professor in the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and in the UC San Diego School of Medicine.

Current AD drugs treat some symptoms of the devastating neurological disorder, but none actually slow its progress, prevent or cure it. No new AD drug has been approved in more than a decade.

The researchers focused on cathepsin B production of N-truncated pGlu-Aβ, a peptide or short chain of amino acids, and the blockade of cathepsin B by E64d, a compound shown to inhibit cysteine proteases, a type of enzyme. AD is characterized by accumulation of a variety of Aβ peptides as oligomers and amyloid plaques in the brain, factors involved in neuronal loss and memory deficits over time. These neurotoxic Aβ peptides are created when enzymes cleave a large protein called amyloid precursor protein (APP) into smaller Aβ peptides of varying toxicity. N-truncated pGlu-Aβ has been shown to be among the most neurotoxic of multiple forms of Aβ peptides.

Much AD research has focused on the APP-cutting enzyme BACE1 β-secretase, but its role in producing pGlu-Aβ was unknown. Cathepsin B is an alternative β-secretase which cleaves the wild-type β-secretase site of APP, which is expressed in the major sporadic and many familial forms of AD. Hook and colleagues looked at what happened after gene knockout of BACE1 or cathepsin B. They found that cathepsin B, but not BACE1, produced the highly toxic pGlu-Aβ.

Perhaps most interestingly, the scientists found that E64d, an enzyme inhibitor of cathepsin B, reduced production of pGlu-Aβ and other AD-associated Aβ peptides. Key was the finding that E64d and cathepsin B gene knock out resulted in improved memory deficits in a mouse model of AD.

"This is an exciting finding," said Hook. "It addresses a new target – cathepsin B – and an effective, safe small molecule, E64d, to reduce the pGlu-Aβ that initiates development of the disease's neurotoxicity. No other work in the field has addressed protease inhibition for reducing pGlu-Aβ of AD."

Hook noted that E64d has already been shown to be safe in clinical trials of patients with muscular dystrophy and would, therefore, likely prove safe for treating AD as well. She hopes to launch Phase 1 human clinical trials in the near future with a modified version of the drug candidate.

###

Co-authors include Gregory Hook, American Life Science Pharmaceuticals, Inc.; Jin Yu and Mark Kindy, Medical University of South Carolina; and Thomas Toneff, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences.

Funding for this research came, in part, from the National Institutes of Health (grants R44AG032784, R01ES016774-02 and R21AG0428), a Veteran's Affairs Merit Review grant, and an Alzheimer's Association award.

Disclosure: Vivian Hook is chair of American Life Science Pharmaceuticals' scientific advisory board and holds equity in the company.

Scott LaFee | EurekAlert!

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>