Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic target discovered for Alzheimer's disease

18.03.2014

Drug candidate blocks production of disease-causing neurotoxins in mouse models

A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene knockout or its reduction by an enzyme inhibitor blocks creation of key neurotoxic pGlu-Aβ peptides linked to Alzheimer's disease (AD). Moreover, the candidate inhibitor drug has been shown to be safe in humans.

The findings, based on AD mouse models and published online in the Journal of Alzheimer's Disease, support continued development of cysteine protease inhibitors as a new drug target class for AD. "No other therapeutic program is investigating cysteine protease inhibitors for treating AD," said collaborator Vivian Hook, PhD, professor in the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and in the UC San Diego School of Medicine.

Current AD drugs treat some symptoms of the devastating neurological disorder, but none actually slow its progress, prevent or cure it. No new AD drug has been approved in more than a decade.

The researchers focused on cathepsin B production of N-truncated pGlu-Aβ, a peptide or short chain of amino acids, and the blockade of cathepsin B by E64d, a compound shown to inhibit cysteine proteases, a type of enzyme. AD is characterized by accumulation of a variety of Aβ peptides as oligomers and amyloid plaques in the brain, factors involved in neuronal loss and memory deficits over time. These neurotoxic Aβ peptides are created when enzymes cleave a large protein called amyloid precursor protein (APP) into smaller Aβ peptides of varying toxicity. N-truncated pGlu-Aβ has been shown to be among the most neurotoxic of multiple forms of Aβ peptides.

Much AD research has focused on the APP-cutting enzyme BACE1 β-secretase, but its role in producing pGlu-Aβ was unknown. Cathepsin B is an alternative β-secretase which cleaves the wild-type β-secretase site of APP, which is expressed in the major sporadic and many familial forms of AD. Hook and colleagues looked at what happened after gene knockout of BACE1 or cathepsin B. They found that cathepsin B, but not BACE1, produced the highly toxic pGlu-Aβ.

Perhaps most interestingly, the scientists found that E64d, an enzyme inhibitor of cathepsin B, reduced production of pGlu-Aβ and other AD-associated Aβ peptides. Key was the finding that E64d and cathepsin B gene knock out resulted in improved memory deficits in a mouse model of AD.

"This is an exciting finding," said Hook. "It addresses a new target – cathepsin B – and an effective, safe small molecule, E64d, to reduce the pGlu-Aβ that initiates development of the disease's neurotoxicity. No other work in the field has addressed protease inhibition for reducing pGlu-Aβ of AD."

Hook noted that E64d has already been shown to be safe in clinical trials of patients with muscular dystrophy and would, therefore, likely prove safe for treating AD as well. She hopes to launch Phase 1 human clinical trials in the near future with a modified version of the drug candidate.

###

Co-authors include Gregory Hook, American Life Science Pharmaceuticals, Inc.; Jin Yu and Mark Kindy, Medical University of South Carolina; and Thomas Toneff, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences.

Funding for this research came, in part, from the National Institutes of Health (grants R44AG032784, R01ES016774-02 and R21AG0428), a Veteran's Affairs Merit Review grant, and an Alzheimer's Association award.

Disclosure: Vivian Hook is chair of American Life Science Pharmaceuticals' scientific advisory board and holds equity in the company.

Scott LaFee | EurekAlert!

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>