Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technique Sheds Light on Human Neural Networks


A new technique, developed by researchers in the Quantitative Light Imaging Laboratory at the Beckman Institute, provides a method to noninvasively measure human neural networks in order to characterize how they form.

Using spatial light interference microscopy (SLIM) techniques developed by Gabriel Popescu, director of the lab, the researchers were able to show for the first time how human embryonic stem cell derived neurons within a network grow, organize spatially, and dynamically transport materials to one another.

“Because our method is label-free, we’ve imaged these type of neurons differentiating and maturing from neuron progenitor cells over 12 days without damage,” said Popescu. “I think this (technique) is pretty much the only way you can monitor for such a long time.”

Scientific Reports recently published their paper on the topic, “Label-Free Characterization of Emerging Human Neuronal Networks.”

Using time-lapse measurement, the researchers are able to watch the changes over time. “We’ve been looking at the neurons every 10 minutes for 24 hours to see how the spatial organization and mass transport dynamics change,” said Taewoo Kim, one of the lead authors on the paper.

The SLIM technique measures the optical path length shift distribution, or the effective length of the path that light follows through the sample. “The light going through the neuron itself will be in a sense slower than the light going through the media around the neuron,” explains Kim. Accounting for that difference allows the researchers to see cell activity—how the cells are moving, forming neural clusters, and then connecting with other cells within the cluster or with other clusters of cells.

“Individual neurons act like they are getting on Facebook,” explains Popescu. “In our movies you can see how they extend these arms, these processes, and begin forming new connections, establishing a network.” Like many users of Facebook, once some connections have been made, the neurons divert attention from looking for more connections and begin to communicate with one another—exchanging materials and information. According to the researchers, the communication process begins after about 10 hours; for the first 10 hours the studies show that the main neuronal activity is dedicated to creating mass in the form of neural extensions or neurites, which allows them to extend their reach.

“Since SLIM allows us to simultaneously measure several fundamental properties of these neural networks as they form, we were able to for the first time understand and characterize the link between changes that occur across a broad range of different spatial and temporal scales. This is impossible to do with any other existing technology,” explains Mustafa Mir, a lead author on the study.

The researchers used untreated cells and cells that were treated with lithium chloride, which delays neurite growth. This allowed them to compare the mass of both the treated and untreated cells, and showed that the main growth of cells is during the connection phase, where dendrites are being extended within and between clusters.

“When we first compared the data from the treated and untreated samples, the potential of this technique to answer important questions in neuroscience and developmental biology became clear. Many diseases result in subtle changes in how neural networks organize and behave, and now we have a tool to study these changes in a practical manner,” said Mir.

The work is done in conjunction with a science and technology center sponsored by the National Science Foundation, Emergent Behaviors of Integrated Cellular Systems (EBICS), which is a multi-institutional effort led by MIT, Georgia Tech, and the University of Illinois. The Illinois site is led by Rashid Bashir, from the Beckman 3D Micro- and Nanosystems Group and head of the Illinois Department of Bioengineering.

EBICS is examining the way that complex systems and patterns rise out of relatively simple interactions with a goal of building living, multi-cellular machines that solve real-world problems in health, security, and the environment.

“Through this center in the past four years, we’ve developed a number of tools trying to understand emergence, trying to define what emergence means,” said Popescu. “This paper is a clear example of our progress toward defining and quantifying this important and universal phenomena.

“We developed these methods based on SLIM to understand at what scale the cells get organized, they become predictable. We quantify emergence versus spatial and temporal scales at which order occurs. The formation of a neuron network is a beautiful example of how emergence occurs. You deploy the cells that have nothing to do with one another—they are completely independent. Then, in less than 24 hours they start to talk to one another—operate more as an ensemble, an organized group, rather than as individuals. Using SLIM we can attest that, although structurally, individual cells do not change much over short time scales, it is their arrangement in space and their collective behavior in time that evolves quickly.”

Popescu hopes that his work will help in building machines that can help with health-related questions, including Alzheimer’s, memory-related conditions, and aging. The first step is to identify the deterministic behavior of the neural cells and discover treatments that enhance this predictable behavior.

“I think we have a set of good tools to both structurally and dynamically tell the difference when cells are functioning in various modes now. The plan is to control the predictable part, such as material transport in neurons or beating in heart cells, and hopefully get the cells to accomplish small tasks,” said Popescu.

“Although in this study we have used SLIM to examine neural networks, the technology showcased here can be applied to a wide variety of biological systems, this is only the tip of the iceberg,” said Mir.

“SLIM technology holds tremendous promise for imaging not only cell-based networks, but also whole slices of brain tissue, where the connections laid down during development are preserved and natural functionalities are expressed,” said Martha Gillette, a neuroscientist in the Neurotech Group at the Beckman Institute and collaborator on the study. “Heterogeneities among individual cells of functionally specialized brain regions are emerging as key contributors to healthy versus diseased states. The ability to analyze individual cells within a multicellular micro-environment that preserves the native structural and functional complexity of the brain is a major challenge that can be addressed using SLIM.”

SLIM is currently being installed in the Microscopy Suite at the Beckman Institute in order to allow other researchers access to this imaging technique.

Maeve Reilly | EurekAlert!
Further information:

Further reports about: Human Popescu networks neurons technique time-lapse measurement

More articles from Health and Medicine:

nachricht Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa
13.10.2015 | University of Pennsylvania

nachricht Breast cancer drug beats superbug
13.10.2015 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>