Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New screening tool could speed development of ovarian cancer drugs

10.02.2015

University of Chicago Medicine researchers have built a model system that uses multiple cell types from patients to rapidly test compounds that could block the early steps in ovarian cancer metastasis. Their three-dimensional cell-culture system, adapted for high-throughput screening, has enabled them to identify small molecules that can inhibit adhesion and invasion, preventing ovarian cancers from spreading to nearby tissues.

The study, published online February 5, 2015, in the journal Nature Communications, is the first to describe a high-throughput screening drug-discovery platform for ovarian cancer that mimics the structural organization and function of human tissue. The model reconstructs the surfaces of the omentum and the peritoneum, membranes that line the abdominal cavity, which are the most frequent sites of ovarian cancer metastasis.


This is a multi-layered 3-D 'organotypic' platform for quantitative high-throughput screening to identify new therapeutics for ovarian cancer. Fibroblasts are red. Mesothelial cells are blue. Ovarian cancer cells are green. The square image is the XY-planes (up-down, right-left). The images on the sides are Z-planes (depth).

Credit: Lengyel laboratory, University of Chicago

"Visualizing how cancer cells interact with a tumor microenvironment that accurately reflects the complex biology of ovarian cancer should help us understand the mechanisms underlying metastatic progression as well as identify new therapeutics that can inhibit this process," said clinical gynecologic oncologist Ernst Lengyel, MD, PhD, senior author of the study and a professor of obstetrics and gynecology at the University of Chicago.

This is a long overdue step forward for ovarian cancer therapy. The current treatment for metastatic ovarian cancer is surgery and chemotherapy, which has a low five-year survival rate. Although recently approved therapies can increase progression-free survival by a few months, "we think this novel screening system has the potential to uncover new, more effective medications that could be targeted more specifically at a patient's cancer," Lengyel said.

Each year about 21,290 women in the United States will be diagnosed with ovarian cancer and about 14,180 women will die from the disease. Ovarian cancer is aggressive and is rarely detected at an early stage. Tumors that form in the ovary or fallopian tube typically travel through the peritoneal fluid to the surfaces of other abdominal organs. Metastatic tumors are usually confined to the abdominal cavity and initially cause few symptoms.

To assemble their model, the researchers collected non-cancerous omental tissue from patients undergoing abdominal surgery. In the laboratory, they isolated and cultured mesothelial cells and fibroblasts, two of the predominant cell types found in omental tissue. Then they combined these cells with extracellular matrix proteins to generate a multi-layered cell-culture model.

The authors were able to miniaturize their model for use in high-throughput screening (HTS), a drug discovery process that can quickly determine the biological or biochemical activity of thousands of compounds. Because HTS has traditionally been performed on an unrealistic platform--monolayers of cancer cells cultured on plastic surfaces--many drugs that seemed promising in initial screens proved ineffective in clinical testing.

So the researchers developed a new system that better reflects human biology and is specific to ovarian cancer. Instead of growing cancer cells on plastic, they inserted a multi-layered omental tissue culture model into each well of a 384-well or 1536-well HTS platform.

Next, ovarian cancer cells, expressing a fluorescent marker to distinguish them from the other cells, were added. Then the wells were exposed to a library of small-molecule compounds. The numbers of ovarian cancer cells that adhered to and invaded the HTS model were counted, and the inhibitory potential of each compound evaluated.

In a primary screen, the researchers identified 17 compounds that inhibited cancer cell adhesion and invasion by at least 75 percent. Six of these compounds were active in a dose-response relationship in three distinct ovarian cancer cell lines. Four compounds significantly inhibited key ovarian cancer cell functions in the early steps of metastasis at low doses.

The research team confirmed those results by testing the four compounds at a low dose in mice injected with ovarian cancer cells. Remarkably, all four compounds inhibited metastasis. Two compounds more than doubled survival. In a follow-up study, one of the compounds--beta-escin, isolated from the seed of the Chinese horse chestnut--inhibited tumor growth and metastasis by 97 percent.

"This study was based on our initial tests of 2,420 compounds," said first author Hilary Kenny, PhD, a research associate (assistant professor) in obstetrics and gynecology at the University of Chicago. "Our model has since been used to test more than 68,000 compounds. This could exceed 100,000 by the end of this year. We are learning to identify compounds with similar structures and functions that may be important for inhibiting key steps in metastasis."

This project emerged as a result of the patient-oriented approach taken by the researchers and clinicians. It is "an important step towards personalized medicine, as described in the new precision medicine initiative proposed by President Obama," Kenny said. "In the future, organotypic models that reflect the unique biology of individual patients could be used in screening. Therefore, personalized high-throughput screening platforms could enable the identification of effective therapeutics for each patient. This is exactly how personalized medicine is supposed to work."

###

The study was funded by Bears Care, the charitable beneficiary of the Chicago Bears Football Club; the National Institutes of Health; the National Cancer Institute; and the National Institute of Neurological Disorders and Stroke. Additional authors were Erin A. White, Chun-Yi Chiang, Anirban K. Mitra, Yilin Zhang, Marion Curtis, Elizabeth M. Schryver and Sam Bettis from the University of Chicago; and Ajit Jadhav, Matthew B. Boxer, Madhu Lal-Nag, Min Shen, Zhuyin Li, and Marc Ferrer from the NIH's National Center for Advancing Translational Sciences.

John Easton | EurekAlert!

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>