Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research provides better understanding of endometriosis

05.06.2014

Macrophages present in shed endometrium in mice may suggest key role in lesion formation, according to new research published in The American Journal of Pathology

A mouse model of endometriosis has been developed that produces endometriosis lesions similar to those found in humans, according to a report published in The American Journal of Pathology. This model closely mirrors the human condition as an estrogen-dependent inflammatory disorder, and findings from the study suggest that macrophages present in shed endometrium contribute to the development of the lesions.

"One in 10 women of reproductive age have endometriosis; it is as common as asthma or diabetes, but it can take up to seven years to diagnose and there is an unmet clinical need for better treatments with fewer side effects," reported lead investigator Erin Greaves, PhD, MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, when addressing the UK Parliament regarding her research.

The lack of a readily available, low-cost, and suitable animal model has hindered progress in the field. Nonhuman primates offer a physiologically relevant model, but their use is limited by cost and ethical concerns. Rat and mouse models have the advantage of lower cost and smaller size but have several disadvantages.

For example, mouse models often rely on suturing endometrial tissue onto the surface of pelvic organs since rodents do not naturally menstruate, raising the concern that tissue artificially placed in the pelvis may not simulate natural conditions or immune response.

The newly reported mouse model of endometriosis relies on the transplantation of menstrual endometrial tissue between genetically identical mice. In brief, a donor mouse is induced to undergo menstruation using estrogen and progesterone. The tissue that is shed from the uterus is removed and implanted into a recipient mouse, allowed to grow, and then removed and analyzed.

"We found that lesions recovered from a variety of sites in the peritoneum of the mice shared histologic similarities with human lesions, including the presence of hemosiderin, cytokeratin-positive epithelial cells, vimentin-positive stromal cells, and a well-developed vasculature. Most of the lesions had evidence of well-organized stromal and glandular structures," says Dr. Greaves. She noted other similarities including changes in the expression patterns of estrogen receptor α and β, also similar to what is found in patient biopsies.

By performing experiments using mice with green fluorescent protein-labeled macrophages in reciprocal transfers with wild-type mice, the researchers obtained evidence that the macrophages present in the shed endometrium survive and create a pro-inflammatory microenvironment that contributes to the formation of endometriotic lesions. "We are excited by these findings because the contribution of macrophages present in shed endometrium to the etiology of endometriotic lesions has not been studied in previous mouse models," comments Dr. Greaves.

The researchers hope that this model will inform future studies investigating the role of immune cells and menstrual tissue on the development of endometriosis, advance the understanding of mechanisms of the disease, and allow the identification and study of novel targets for therapy.

According to The World Endometriosis Society, endometriosis affects an estimated 176 million women worldwide. It is an inflammatory disorder where patches of endometrium-like tissue (the inner lining of the mammalian uterus) grow as lesions abnormally-located outside the uterine cavity. The tissue is thought to originate from endometrial fragments shed at menses. Characteristic inflammatory changes are seen such as increases in inflammatory mediators and tissue-resident immune cells. Women with endometriosis often complain of chronic, debilitating pelvic pain and infertility.

Eileen Leahy | Eurek Alert!
Further information:
http://www.elsevier.com

Further reports about: Elsevier Health disorder endometrial endometriosis immune inflammatory lesions macrophages menstrual stromal

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>