Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential cancer treatment using microwaves to target deep tumors

12.10.2016

Physicists at The University of Texas at Arlington have shown that using microwaves to activate photosensitive nanoparticles produces tissue-heating effects that ultimately lead to cell death within solid tumors.

"Our new method using microwaves can propagate through all types of tissues and target deeply situated tumors," said Wei Chen, UTA professor of physics and lead author of the study published this month in he Journal of Biomedical Nanotechnology titled "A new modality of cancer treatment-nanoparticle mediated microwave induced photodynamic therapy."


This is a figure explaining the new method.

Credit: UTA

Photodynamic therapy kills cancer cells when a nanoparticle introduced into tumor tissue generates toxic singlet oxygen after being exposed to light. Singlet oxygen is a highly reactive type of oxygen that irreversibly damages cell mitochondria and eventually causes cell death.

"Up to now, photodynamic therapy, which depends on visible, ultraviolet or near infrared light, was considered effective for skin cancers or cancers close to the skin surface," Chen said. "Our new concept combining microwaves with photodynamic therapy opens up new avenues for targeting deeper tumors and has already proven effective in rapidly and safely reducing tumor size."

... more about:
»COPPER »microwaves »nanoparticle »tumors

In prior studies, the researchers had identified a new type of nanoparticle, copper-cysteamine or Cu-Cy, that could be activated by X-rays to produce singlet oxygen and slow the growth of tumors. X-ray radiation, however, poses significant risks to patients and can harm healthy tissue.

In this new lab study, the team demonstrated that the nanoparticle Cu-Cy also can be activated by microwaves, which can be targeted directly at the tumor itself without harming surrounding tissue.

"Our new microwave-induced photodynamic therapy offers numerous advantages, the most significant of which is increased safety," Chen said. "Our nanoparticle Cu-Cy also demonstrates very low toxicity, is easy to make and inexpensive, and also emits intense luminescence, which means it can also be used as an imaging agent."

The researchers demonstrated that both in vitro and in vivo studies on an osteosarcoma cell line showed significant cell destruction using copper cysteamine nanoparticles under microwave activation. The heating effects and the release of copper ions from copper cysteamine upon activation was the main mechanism for the generation of the reactive oxygen needed for cancer cell destruction.

Chen was joined on this research by Lun Ma, a UTA research assistant professor in physics, as well as Mengyu Yao, Lihua Li and Yu Zhang from the Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials in Guangzhou, China, and Junying Zhang from the Physics Department at Beihang University in Beijing, China. The U.S. Army Medical Research Acquisition Activity, the National Science Foundation and Department of Homeland Security's joint Academic Research Initiative program, the National Basic Research Program of China, the National Natural Science Foundation of China and the five-year plan of the Chinese Military, all supported this research.

"This new invention is largely based on the new photosensitizer copper cysteamine that we invented and patented, and I would like to thank all our team members, particularly Dr. Lun Ma, for the time and energy spent on this project," Chen said.

Alex Weiss, UTA chair of the Physics Department, emphasized the importance of this research in the context of UTA's increasing focus on health and the human condition within the Strategic Plan 2020: Bold Solutions|Global Impact.

"Dr. Chen's research into nanoparticle activation has led to important discoveries that could potentially transform cancer treatment," Weiss said.  "This new paper on the possibilities of microwave activation demonstrates yet again how Dr. Chen's search for new modalities of therapy could play a key role in finding safe, viable and inexpensive treatments for cancer."

###

Chen came to UTA in 2006 following an international career in the United States, Canada, Sweden and China. He received his doctorate in chemistry from Peking University in Beijing, China.

About The University of Texas at Arlington

The University of Texas at Arlington is a Carnegie Research-1 "highest research activity" institution of about 55,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit http://www.uta.edu to learn more, and find UTA rankings and recognition at http://www.uta.edu/uta/about/rankings.php.

For more on the Strategic Plan, see Strategic Plan 2020: Bold Solutions | Global Impact.

Media Contact

Louisa Kellie
louisa.kellie@uta.edu
817-524-8926

 @utarlington

http://www.uta.edu 

Louisa Kellie | EurekAlert!

Further reports about: COPPER microwaves nanoparticle tumors

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>