Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge of genes driving bladder cancer points to targeted treatments

15.09.2014

The story of cancer care seems so simple: find the mutated gene that causes cancer and turn it off or fix it. But rarely does a single gene cause cancer.

More often, many genes are altered together to drive the disease. So the challenge becomes sorting out which altered genes are the most to blame in which cancers. A collaborative study between researchers at the University of Colorado Cancer Center and the National Cancer Institute (NCI) published today in the journal Clinical Cancer Research takes an important step toward answering this question in bladder cancer.


Dan Theodorescu, M.D., Ph.D., director of the University of Colorado Cancer Center, and colleagues from the National Cancer Institute show genes commonly mutated in bladder cancer, implying at least two distinct genotypes and phenotypes for the disease.

Credit: CU Cancer Center

Specifically, the study examined a mutation-rich layer of the genome called the exome of 54 bladder tumors from primarily Caucasian patients. The study is the first to show alterations in the gene BAP1 in 15 percent of tumors; the gene is a likely tumor suppressor and so bladder cancers with alterations in this gene may be without an important check on the growth and survival of bladder cancer tissue.

Somatic BAP1 alterations contribute to a high frequency of tumors (10/14, 71 percent) with defects in genes encoding BRCA1 and BRCA2 pathway proteins, pathways that have been previously implicated in breast and other cancer types.

More surprising, a second, highly independent genetic pathway was found in 69 percent of 54 tumors, in which alterations of the TERT promoter created what is effectively a second subset of bladder cancer. The TERT promoter mutations did not significantly correlate with somatic alterations in other cancer genes, indicating that this alteration confers a presumed oncogenic benefit independent of other cancer gene alterations.

The gene KDM6A was frequently altered in 24 percent of tumors, and the study shows that experimental depletion in of KDM6A in human bladder cancer cells enhanced in vitro proliferation, in vivo tumor growth, and cell migration, confirming its role as a cancer driver and tumor suppressor in bladder tissue.

The study revealed other surprising relationships between the types of genetic alterations in bladder tumors. BAP1 somatic mutations may correlate with papillary features in some bladder tumors and were significantly more frequent in Caucasian patients than Chinese patients, indicating ethnicity, lifestyle, or exposure may influence somatic BAP1 mutations.

BAP1 and KDM6A mutations significantly co-occurred in tumors, indicating they likely supply mutually reinforcing survival advantages to cancer cells. Finally, just four genes encoding chromatin remodeling enzymes, BAP1, KDM6A, ARID1A, and STAG2, were altered in 46 percent of 54 tumors and demonstrate a major contribution from somatic alterations targeting chromatin remodeling functions in bladder cancer.

"Taken together, we have identified new subtypes of bladder cancer that are related by somatic and germline genetic alterations that are observed in patient tumors. These subtypes may be vulnerable to subtype-specific therapeutic targeting. For example, many tumors in this study possessed cells with mutations targeting the BRCA DNA repair pathway indicating they are likely to be deficient in their ability to repair DNA," says Dan Theodorescu, MD, PhD, professor of Urology and Pharmacology, director of the University of Colorado Cancer Center and the paper's senior author.

"Thus the tumor cells should be especially sensitive to chemotherapeutic drugs that create DNA damage. This is an excellent example of a case in which basic science can now suggest targeted treatments that have the real possibility to benefit patients," says Michael Nickerson PhD, staff scientist and lead author from the National Cancer Institute.

###

Located on the Anschutz Medical Campus, the University of Colorado Cancer Center is Colorado's only National Cancer Institute-designated comprehensive cancer center, a distinction recognizing its outstanding contributions to research, clinical trials, prevention and cancer control. CU Cancer Center is a member of the prestigious National Comprehensive Cancer Network®, an alliance of the nation's leading cancer centers working to establish and deliver guidelines for clinical cancer practice. Our primary clinical care partner, the University of Colorado Hospital, was recently ranked #15 for cancer care by U.S. News & World Report. CU Cancer Center is comprised of more than 350 researchers and physicians at three state universities and other institutions, all working toward one goal: Translating cancer science into life. For more information visit Coloradocancercenter.org and follow CU Cancer Center on Facebook and Twitter.

Garth Sundem | Eurek Alert!

Further reports about: BAP1 Cancer DNA alterations genes mutations pathway somatic treatments tumors

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>