Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge of genes driving bladder cancer points to targeted treatments

15.09.2014

The story of cancer care seems so simple: find the mutated gene that causes cancer and turn it off or fix it. But rarely does a single gene cause cancer.

More often, many genes are altered together to drive the disease. So the challenge becomes sorting out which altered genes are the most to blame in which cancers. A collaborative study between researchers at the University of Colorado Cancer Center and the National Cancer Institute (NCI) published today in the journal Clinical Cancer Research takes an important step toward answering this question in bladder cancer.


Dan Theodorescu, M.D., Ph.D., director of the University of Colorado Cancer Center, and colleagues from the National Cancer Institute show genes commonly mutated in bladder cancer, implying at least two distinct genotypes and phenotypes for the disease.

Credit: CU Cancer Center

Specifically, the study examined a mutation-rich layer of the genome called the exome of 54 bladder tumors from primarily Caucasian patients. The study is the first to show alterations in the gene BAP1 in 15 percent of tumors; the gene is a likely tumor suppressor and so bladder cancers with alterations in this gene may be without an important check on the growth and survival of bladder cancer tissue.

Somatic BAP1 alterations contribute to a high frequency of tumors (10/14, 71 percent) with defects in genes encoding BRCA1 and BRCA2 pathway proteins, pathways that have been previously implicated in breast and other cancer types.

More surprising, a second, highly independent genetic pathway was found in 69 percent of 54 tumors, in which alterations of the TERT promoter created what is effectively a second subset of bladder cancer. The TERT promoter mutations did not significantly correlate with somatic alterations in other cancer genes, indicating that this alteration confers a presumed oncogenic benefit independent of other cancer gene alterations.

The gene KDM6A was frequently altered in 24 percent of tumors, and the study shows that experimental depletion in of KDM6A in human bladder cancer cells enhanced in vitro proliferation, in vivo tumor growth, and cell migration, confirming its role as a cancer driver and tumor suppressor in bladder tissue.

The study revealed other surprising relationships between the types of genetic alterations in bladder tumors. BAP1 somatic mutations may correlate with papillary features in some bladder tumors and were significantly more frequent in Caucasian patients than Chinese patients, indicating ethnicity, lifestyle, or exposure may influence somatic BAP1 mutations.

BAP1 and KDM6A mutations significantly co-occurred in tumors, indicating they likely supply mutually reinforcing survival advantages to cancer cells. Finally, just four genes encoding chromatin remodeling enzymes, BAP1, KDM6A, ARID1A, and STAG2, were altered in 46 percent of 54 tumors and demonstrate a major contribution from somatic alterations targeting chromatin remodeling functions in bladder cancer.

"Taken together, we have identified new subtypes of bladder cancer that are related by somatic and germline genetic alterations that are observed in patient tumors. These subtypes may be vulnerable to subtype-specific therapeutic targeting. For example, many tumors in this study possessed cells with mutations targeting the BRCA DNA repair pathway indicating they are likely to be deficient in their ability to repair DNA," says Dan Theodorescu, MD, PhD, professor of Urology and Pharmacology, director of the University of Colorado Cancer Center and the paper's senior author.

"Thus the tumor cells should be especially sensitive to chemotherapeutic drugs that create DNA damage. This is an excellent example of a case in which basic science can now suggest targeted treatments that have the real possibility to benefit patients," says Michael Nickerson PhD, staff scientist and lead author from the National Cancer Institute.

###

Located on the Anschutz Medical Campus, the University of Colorado Cancer Center is Colorado's only National Cancer Institute-designated comprehensive cancer center, a distinction recognizing its outstanding contributions to research, clinical trials, prevention and cancer control. CU Cancer Center is a member of the prestigious National Comprehensive Cancer Network®, an alliance of the nation's leading cancer centers working to establish and deliver guidelines for clinical cancer practice. Our primary clinical care partner, the University of Colorado Hospital, was recently ranked #15 for cancer care by U.S. News & World Report. CU Cancer Center is comprised of more than 350 researchers and physicians at three state universities and other institutions, all working toward one goal: Translating cancer science into life. For more information visit Coloradocancercenter.org and follow CU Cancer Center on Facebook and Twitter.

Garth Sundem | Eurek Alert!

Further reports about: BAP1 Cancer DNA alterations genes mutations pathway somatic treatments tumors

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>