Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic risk factors for myopia discovered

22.04.2016

Genes and environment determine short-sightedness

Myopia, also known as short-sightedness or near-sightedness, is the most common disorder affecting the eyesight and it is on the increase. The causes are both genetic and environmental. The Consortium for Refractive Error and Myopia (CREAM) has now made important progress towards understanding the mechanisms behind the development of the condition.

This international group of researchers includes scientists involved in the Gutenberg Health Study of the University Medical Center of Johannes Gutenberg University Mainz (JGU). The team has uncovered nine new genetic risk factors which work together with education-related behavior as the most important environmental factor causing myopia to generate the disorder.

The results of the study "Genome-wide joint meta-analyses of genetic main effects and interaction with education level identify additional loci for refractive error: The CREAM Consortium" have recently been published in the scientific journal Nature Communications.

There has been a massive rise in the prevalence of short-sightedness across the globe in recent decades and this upwards trend is continuing. It is known from previous studies of twins and families that the risk of acquiring short-sightedness is determined to a large extent by heredity.

However, the myopia-causing genes that had been previously identified do not alone sufficiently explain the extent to which the condition is inherited. In addition to the genetic causes of myopia there are also environmental factors, the most significant of which are education-related behavior patterns.

“We know from the Gutenberg Health Study conducted at Mainz that the number of years of education increases the risk of developing myopia," said Professor Norbert Pfeiffer, Director of the Department of Ophthalmology at the Mainz University Medical Center.

Meta-analysis of multi-national datasets

With the aim of identifying genetic mutations relating to myopia and acquiring better insight into the development of the condition, the international research group CREAM carried out a meta-analysis of data collected from around the world. The data compiled for this analysis originated from more than 50,000 participants who were analyzed in 34 studies. The second largest group of participants was formed by the more than 4,500 subjects of the Gutenberg Health Study of the Mainz University Medical Center. "In the field of genetic research, international cooperation is of particular importance.

This is also borne out by this study, to which we were able to make a valuable contribution in the form of data from our Gutenberg Health Study," continued Professor Norbert Pfeiffer. "And in view of the fact that a survey undertaken by the European Eye Epidemiology Consortium with the help of the Gutenberg Health Study shows that about one third of the adult population of Europe is short-sighted, it is essential that we learn more about its causes in order to come up with possible approaches for future treatments."

Aware that environmental effects and hereditary factors reinforce one another in the development of myopia, the scientists devised a novel research concept for their investigations. They used a statistical analysis technique that takes into account both the effects of the environmental and hereditary factors and does so in equal measure and simultaneously. Their efforts were crowned with success as they were able to classify nine previously unknown genetic risk factors.

Risk-associated gene involved in the development of short-sightedness

These newly discovered genetic variants are associated with proteins which perform important functions when it comes to the transmission of signals in the eye. One of these genes is of particular interest because it plays a major role in the transmission of the neurotransmitter gamma-aminobutyric acid (GABA) in the eye. Previous studies have shown that there is greater activation of the gene in question in eyes that are myopic. The results of current research substantiate this conclusion. The CREAM researchers interpret this as evidence that this newly discovered risk-related gene is actually involved in the development of short-sightedness. This represents significant initial headway towards understanding how genetic causes interact with the level of education as an environmental factor to produce the heterogeneity of myopia. Further research will be needed to clarify the details of how the mechanisms actually work and interact with one another.

The spread of short-sightedness is a worldwide phenomenon. Particularly in South East Asia the incidence of myopia in school children has increased notably over the last decades. This is likely due to an improvement in educational attainment. People who read a great deal also perform a lot of close-up work, usually in poor levels of daylight. The eye adjusts to these visual habits and the eyeball becomes more elongated than normal as a result. But if it becomes too elongated, the cornea and lens focus the image just in front of the retina instead of on it so that distant objects appear blurry. The individual in question is then short-sighted.

Publication
Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error; Qiao Fan et al. (2016). Nature communications 7; Article number: 11008; Doi: 10.1038/ncomms11008 (http://www.nature.com/ncomms/2016/160329/ncomms11008/full/ncomms11008.html)

Read more
http://www.uni-mainz.de/presse/17465_ENG_HTML.php - press release " Nearsightedness increases with level of education and longer schooling" (21 July 2014)

Contact
Professor Dr. Norbert Pfeiffer,
Director of the Department of Ophthalmology at the Mainz University Medical Center
Langenbeckstr. 1, 55131 Mainz, GERMANY
phone +49 6131 17-7085, fax +49 6131 17-6620, e-mail: norbert.pfeiffer@unimedizin-mainz.de

Press contact
Barbara Reinke, Mainz University Medical Center – Press and Public Relations,
phone +49 6131 17-7428, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de

Weitere Informationen:

http://www.uni-mainz.de/presse/20232_ENG_HTML.php - press release ;
http://www.unimedizin-mainz.de/home.html?L=1 - Mainz University Medical Center ;
http://www.gutenberghealthstudy.org/ghs/overview.html - Gutenberg Health Study

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>