Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genes for regulating the heart rhythm discovered

02.07.2014

Cardiac arrhythmia is a frequent occurrence: according to the WHO, 33.5 million people all over the world are affected by atrial fibrillation - this being just one of many different kinds of arrhythmia.

A global research consortium, of which the EURAC Center for Biomedicine in Bozen-Bolzano is a member, has now identified 23 new genes which control both the heart rhythm and the length of the so-called QT interval. The study was further enhanced by data provided by participants from South Tyrol. The results, which open up new pathways for early diagnosis and treatment, have just been published in the medical journal “Nature Genetics”.

The QT interval is part of the heart’s electrical cycle as measured by ECG, and represents the electrical depolarization and repolarization of the ventricles. Lengthened intervals indicate dysfunction in the heart beat and are liable to lead to a five-fold increase in the risk of sudden death from heart failure. The underlying causes for such irregularities have not yet been fully explored. They are generally supposed to be due mainly to genetic factors.

In collaboration with research partners recruited from an international consortium, scientists from the EURAC Center for Biomedicine have evaluated the ECG results of over 100,000 study participants from Germany, Italy and the USA, as well as around 1,300 from South Tyrol who made their data freely available to the EURAC researchers. The scientists compared the QT intervals from the ECGs of all the study participants with their genetic variants in order to identify possible connections.

The result: they discovered 23 new genes which are linked to a lengthened QT interval. At the same time, they were able to demonstrate that the newly identified genes, which previously had not been thought to play a part in the heart rhythm, had a significant influence on the electrical activity of the heart muscle. In more in-depth studies with heart disease patients, the researchers could additionally determine that two of the newly identified genes were indeed risk factors for the disease known as “Long QT syndrome”.

“We still need to look more closely at the interplay of these genes with other risk factors, such as medication or life style. But one thing is certain: these findings have definitely brought us a great deal closer to recognising the causes of arrhythmia and sudden death from heart failure,” stress the two scientists Peter Pramstaller, manager of the EURAC Center for Biomedicine and his deputy, Andrew Hicks.

“With data from more than 100,000 participants in the study and the joint efforts of hundreds of international researchers, this represents one of the biggest global research projects on this topic to which we were able to contribute through both our scientific expertise as well as making data available from South Tyrol participants,” summarise Pramstaller and Hicks.

Another current study carried out by the EURAC Center for Biomedicine will provide further important insights into arrhythmia and sudden death from heart failure. Here, researchers are examining a protein, also identified in the QT study, which transports calcium within the cells in a pump-like action and can therefore be considered one of the most important proteins for a correctly functioning heart cell.

Weitere Informationen:

http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3014.html - Article "Nature Genetics"

Laura Defranceschi | idw - Informationsdienst Wissenschaft
Further information:
http://www.eurac.edu

Further reports about: ECG EURAC Genetics Nature death depolarization genes identify medication rhythm

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>