Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genes for regulating the heart rhythm discovered


Cardiac arrhythmia is a frequent occurrence: according to the WHO, 33.5 million people all over the world are affected by atrial fibrillation - this being just one of many different kinds of arrhythmia.

A global research consortium, of which the EURAC Center for Biomedicine in Bozen-Bolzano is a member, has now identified 23 new genes which control both the heart rhythm and the length of the so-called QT interval. The study was further enhanced by data provided by participants from South Tyrol. The results, which open up new pathways for early diagnosis and treatment, have just been published in the medical journal “Nature Genetics”.

The QT interval is part of the heart’s electrical cycle as measured by ECG, and represents the electrical depolarization and repolarization of the ventricles. Lengthened intervals indicate dysfunction in the heart beat and are liable to lead to a five-fold increase in the risk of sudden death from heart failure. The underlying causes for such irregularities have not yet been fully explored. They are generally supposed to be due mainly to genetic factors.

In collaboration with research partners recruited from an international consortium, scientists from the EURAC Center for Biomedicine have evaluated the ECG results of over 100,000 study participants from Germany, Italy and the USA, as well as around 1,300 from South Tyrol who made their data freely available to the EURAC researchers. The scientists compared the QT intervals from the ECGs of all the study participants with their genetic variants in order to identify possible connections.

The result: they discovered 23 new genes which are linked to a lengthened QT interval. At the same time, they were able to demonstrate that the newly identified genes, which previously had not been thought to play a part in the heart rhythm, had a significant influence on the electrical activity of the heart muscle. In more in-depth studies with heart disease patients, the researchers could additionally determine that two of the newly identified genes were indeed risk factors for the disease known as “Long QT syndrome”.

“We still need to look more closely at the interplay of these genes with other risk factors, such as medication or life style. But one thing is certain: these findings have definitely brought us a great deal closer to recognising the causes of arrhythmia and sudden death from heart failure,” stress the two scientists Peter Pramstaller, manager of the EURAC Center for Biomedicine and his deputy, Andrew Hicks.

“With data from more than 100,000 participants in the study and the joint efforts of hundreds of international researchers, this represents one of the biggest global research projects on this topic to which we were able to contribute through both our scientific expertise as well as making data available from South Tyrol participants,” summarise Pramstaller and Hicks.

Another current study carried out by the EURAC Center for Biomedicine will provide further important insights into arrhythmia and sudden death from heart failure. Here, researchers are examining a protein, also identified in the QT study, which transports calcium within the cells in a pump-like action and can therefore be considered one of the most important proteins for a correctly functioning heart cell.

Weitere Informationen: - Article "Nature Genetics"

Laura Defranceschi | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: ECG EURAC Genetics Nature death depolarization genes identify medication rhythm

More articles from Health and Medicine:

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

nachricht Older patients recover more slowly from concussion
06.10.2015 | Radiological Society of North America

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015 | Medical Engineering

Discovery about new battery overturns decades of false assumptions

07.10.2015 | Power and Electrical Engineering

Ancient rocks record first evidence for photosynthesis that made oxygen

07.10.2015 | Earth Sciences

More VideoLinks >>>