Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene for bipolar disorder discovered

12.03.2014

First on top of the world and then in the depths of despair – this is what the extreme mood changes for people with bipolar disorder are like.

Under the direction of scientists from the University of Bonn Hospital, the Central Institute of Mental Health of Mannheim and the University of Basel Hospital, an international collaboration of researchers discovered two new gene regions which are connected with the prevalent disease. In this unparalleled worldwide study, the scientists are utilizing unprecedented numbers of patients. The results are now being published in the renowned journal "Nature Communications".


In the lab: Prof. Dr. Markus Nöthen, Director of the Institute of Human Genetics University of Bonn Hospital.

(c) Photo: Volker Lannert/Uni Bonn

Throughout the course of their lives, about one percent of the population suffers from bipolar disorder, also known as manic-depressive disorder. The patients undergo a veritable rollercoaster of emotions:

During extreme shifts, they experience manic phases with delusions of grandeur, increased drive and a decreased need for sleep as well as depressive episodes with a severely depressed mood to the point of suicidal thoughts. The causes of the disease are not yet fully understood, however in addition to psychosocial triggers, genetic factors play a large role.

"There is no one gene that has a significant effect on the development of bipolar disorder," says Prof. Dr. Markus M. Nöthen, Director of the Institute of Human Genetics of the University of Bonn Hospital. "Many different genes are evidently involved and these genes work together with environmental factors in a complex way."

Scale of the investigation is unparalleled worldwide

In recent years, scientists at the Institute of Human Genetics were already involved in decoding several genes associated with bipolar disorder. The researchers working with Prof. Dr. Marcella Rietschel from the Central Institute of Mental Health of Mannheim, Prof. Dr. Markus M. Nöthen from the University of Bonn Hospital and Prof. Dr. Sven Cichon from the University of Basel Hospital are now using unprecedented numbers of patients in an international research collaboration:

New genetic data from 2266 patients with manic-depressive disorder and 5028 control persons were obtained, merged with existing data sets and analyzed together. In total, data on the genetic material of 9747 patients were compared with data from 14,278 healthy persons. "The investigation of the genetic foundations of bipolar disorder on this scale is unique worldwide to date," says Prof. Rietschel from the Central Institute of Mental Health of Mannheim.

The search for genes involved in manic-depressive disorder is like looking for a needle in a haystack. "The contributions of individual genes are so minor that they normally cannot be identified in the 'background noise' of genetic differences," explains Prof. Cichon from the University of Basel Hospital.

Only when the DNA from very large numbers of patients with bipolar disorder are compared to the genetic material from an equally large number of healthy persons can differences be confirmed statistically. Such suspect regions which indicate a disease are known by scientists as candidate genes.

Two new gene regions discovered and three known gene regions confirmed

Using automated analysis methods, the researchers recorded about 2.3 million different regions in the genetic material of patients and comparators, respectively. The subsequent evaluation using biostatistical methods revealed a total of five risk regions on the DNA associated with bipolar disorder. Two of these regions were newly discovered:

The gene "ADCY2" on chromosome five and the so-called "MIR2113-POU3F2" region on chromosome six. The risk regions "ANK3", "ODZ4" and "TRANK1" have already been described in prior studies. "These gene regions were, however, statistically better confirmed in our current investigation - the connection with bipolar disorder has now become even clearer," says Prof. Nöthen.

The researchers are particularly interested in the newly discovered gene region "ADCY2". It codes an enzyme which is involved in the conduction of signals into nerve cells. "This fits very well with observations that the signal transfer in certain regions of the brain is impaired in patients with bipolar disorder," explains the human geneticist of the University of Bonn Hospital. With their search for genetic regions, the scientists are gradually clarifying the causes of manic-depressive disorder. "Only when we know the biological foundations of this disease can be also identify starting points for new therapies," says Prof. Nöthen.

The research is being sponsored by the Federal Ministry for Education and Research (BMBF) within the scope of the National Genome Research Network plus (NGFNplus) in the Integrated Genome Research Network MooDS (Systematic Investigation of the Molecular Causes of Major Mood Disorders and Schizophrenia) and through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the e:Med Programme.

Publication: Mühleisen, Leber, Schulze et al., Genome-wide association study reveals two new risk loci for bipolar disorder, Nature Communications, DOI: 10.1038/ncomms4339

Contact information:

Prof. Dr. Markus M. Nöthen
Institute of Human Genetics
University of Bonn Hospital
Tel. +49 (0)228/28751101
E-Mail: markus.noethen@ukb.uni-bonn.de

Prof. Dr. Marcella Rietschel
Central Institute of Mental Health, Mannheim
Tel. +49 (0)621/17036051
E-Mail: marcella.rietschel@zi-mannheim.de

Prof. Dr. Sven Cichon
Department of Medical Genetics
University of Basel Hospital
Tel. +41 (0) 61 265 36 47
E-Mail: sven.cichon@usb.ch

Johannes Seiler | idw - Informationsdienst Wissenschaft

Further reports about: Genetics Health Mental bipolar discovered disorder explains genes healthy

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>