Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues for the early detection of colorectal cancer

08.10.2014

Researchers at the University of Luxembourg have identified potential new ways to test for the first signs of one of the most deadly types of cancer: colorectal cancer. They have found new “biomarkers”: molecules whose increased presence or absence in tissue suggests the development of tumorous cells. These indicators could help detect colorectal cancer at an early stage, predict its severity or even offer new treatments.

“Colorectal cancer is still one of the most frequent and deadliest cancers worldwide. But diagnosed in time it can be cured in 9 out of 10 cases”, said Professor Serge Haan from the Life Science Research Unit at the University of Luxembourg.


Histological comparison between normal colon tissue (images on the left) and colon tumor tissue (on the right) collected in Luxembourg and in which the expression of the SOCS proteins was assessed.

(c) University of Luxembourg - LSRU

“Thus it is highly important to identify more sensitive and specific markers to improve early diagnosis as well as therapeutic strategies”.

The research team around Prof. Serge Haan and Dr. Elisabeth Letellier studied over 800 detailed results of tissue-analysis of both patients with various stages of colorectal cancer and healthy individuals.

They completed this study with original analysis of patient material from the Ontario Tumor Bank in Canada and the Integrated Biobank of Luxembourg.

The Luxembourg-based team were the first to see a significant reduction in certain proteins (specifically SOCS2 and SOCS6) in pre-cancerous and cancerous colorectal cells.

They concluded that especially SOCS2 could be a very sensitive, early diagnostic biomarker. Further analysis also revealed that this protein could even give an early prediction of the cancer’s severity.

SOCS stands for “Suppressor Of Cytokine Signalling”, regulatory proteins which are essential for normal cell growth.

There is increasing evidence that the loss of SOCS proteins plays a role in many cancers as this induce uncontrolled cell growth and tumour development. This study additionally strengthens the case for those proteins having tumour repressive potential.

These findings have been published in the renowned British Journal of Cancer. The research team included several Luxembourg biomedical research institutions: The National Health Laboratory, the Santé Public Research Centre and the Integrated Biobank of Luxembourg.

This study was financed by the Luxembourg Cancer Foundation. Further work is now needed to expand on these findings before they can be used clinically.

Weitere Informationen:

http://www.nature.com/bjc/journal/v111/n4/abs/bjc2014377a.html - Link to the publication
http://wwwen.uni.lu/recherche/fstc/life_sciences_research_unit - Life Sciences Research Unit at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>