Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Alzheimer's-related memory disorder identified

14.11.2014

A multi-institutional study has defined and established criteria for a new neurological disease closely resembling Alzheimer's disease called primary age-related tauopathy (PART).

Patients with PART develop cognitive impairment that can be indistinguishable from Alzheimer's disease, but they lack amyloid plaques. Awareness of this neurological disease will help doctors diagnose and develop more effective treatments for patients with different types of memory impairment.


A multi-institutional study has defined and established criteria for a new neurological disease closely resembling Alzheimer's disease called primary age-related tauopathy (PART). Patients with PART develop cognitive impairment that can be indistinguishable from Alzheimer's disease, but they lack amyloid plaques. Awareness of this neurological disease will help doctors diagnose and develop more effective treatments for patients with different types of memory impairment.

Credit: Allison Perry and Laura Dawahare, University of Kentucky Office of Public Relations and Marketing

The study, co-led by Peter T. Nelson, MD, PhD, of the University of Kentucky's Sanders-Brown Center on Aging, and John F. Crary, MD, PhD, of Pathology & Neuroscience with Mount Sinai Hospital, was published in the current issue of Acta Neuoropathologica.

"To make an Alzheimer's diagnosis you need to see two things together in a patient's brain: amyloid plaques and structures called neurofibrillary tangles composed of a protein called tau," said Dr. Nelson, a professor of neuropathology at the University of Kentucky's Sanders-Brown Center on Aging. "However, autopsy studies have demonstrated that some patients have tangles but no plaques and we've long wondered what condition these patients had."

Plaques in the brain, formed from the accumulation of amyloid protein, are a hallmark of Alzheimer's disease. Until now, researchers have considered cases with only tangles to be either very early-stage Alzheimer's or a variant of the disease in which the plaques are harder to detect.

However, previous in-depth biochemical and genetic studies have failed to reveal the presence of any abnormal amyloid in these patients. Although tangle-only patients can have memory complaints, the presence of plaques is a key requirement for an Alzheimer's diagnosis.

In the current study, investigators from the United States (including five from Sanders-Brown), Canada, Europe, and Japan came together to formalize criteria for diagnosing this new neurological disorder. The study establishes that PART is a primary tauopathy, a disease directly caused by the tau protein in tangles.

Many of the neurofibrillary tangles in Alzheimer's brain, in contrast, are thought to arise secondarily to amyloid or some other stimuli. The researchers propose that individuals who have tangles resembling those found in Alzheimer's but have no detectable amyloid plaques should now be classified as PART.

PART is most severe in patients of advanced age, but is generally mild in younger elderly individuals. The reason for this is currently unknown, but unlike Alzheimer's disease, in which the tangles spread throughout the brain, in PART cases the tangles are restricted mainly to structures important for memory.

It is too early to tell how common PART is, but given that tangles are nearly universal in the brains of older individuals, it might be more widespread than generally recognized. While further studies are required, new diagnostic tests using brain scans and cerebrospinal fluid biomarkers for amyloid and tau are finding surprisingly high proportions of patients (as many as 25% in some studies) with mild cognitive impairment that are positive for tau but negative for amyloid.

"Until now, PART has been difficult to treat or even study because of lack of well-defined criteria," said Dr. Nelson. "Now that the scientific community has come to a consensus on what the key features of PART are, this will help doctors diagnose different forms of memory impairment early. These advancements will have a big impact on our ability to recognize and develop effective treatments for brain diseases seen in older persons."

Identifying the type of neurological disorder in the early stages of disease is critical if treatment is to begin before irreparable brain damage has occurred. However, in the absence of clear criteria, different forms of neurological disorders have been hard to distinguish. As a result, PART patients may have confounded clinical trials of amyloid-targeting drugs for Alzheimer's disease as these treatments are unlikely to be effective against tangles. Along with the development of better biomarkers and genetic risk factors for dementia, the new diagnosis criteria will help PART patients to receive more targeted therapy and improve the accuracy of clinical trials for Alzheimer's drugs.

The University of Kentucky's Sanders-Brown Center on Aging was established in 1979 and is one of the original ten National Institutes of Health (NIH)-funded Alzheimer's disease Research Centers. The SBCoA is internationally acclaimed for its progress in the fight against illnesses facing the aging population.

The article is titled, "Primary age-related tauopathy (PART): a common pathology associated with human aging." The other contributors are: John Q. Trojanowski, Steven E. Arnold, Jonathan B. Toledo, Juan C. Troncoso (University of Pennsylvania); Julie A. Schneider (Rush University Medical Center); Jose F. Abisambra, Erin L. Abner, Gregory A. Jicha, Janna H. Neltner, Masahito Yamada (University of Kentucky); Irina Alafuzoff (Uppsala University); Johannes Attems (Newcastle University); Thomas G. Beach (Banner Sun Health Research Institute); Eileen H. Bigio (Northwestern University); Nigel J.Cairns, Walter A. Kukull, Thomas J. Montine (University of Washington); Dennis W. Dickson, David S. Knopman, MelissaE. Murray (Mayo Clinic); Marla Gearing (Emory University); Lea T. Grinberg (UC San Francisco and University of Sao Paulo); Patrick R. Hof (Mount Sinai); Bradley T.Hyman (Harvard Medical School); Kurt Jellinger (Institute of Clinical Neurobiology, Vienna); Gabor G. Kovacs (Medical University Vienna); Julia Kofler (University of Pittsburgh); Ian R. Mackenzie (University of British Columbia); Eliezer Masliah (University of California, San Diego); Ann McKee (Boston University); Ismael Santa-Maria, Michael L. Shelanski, Jean Paul Vonsattel (CUMC); William W. Seeley (UC San Francisco); Alberto Serrano-Pozo (University of Iowa); Thor Stein (VA Medical Center & Boston University); Masaki Takao (Tokyo Metropolitan Geriatric Hospital); Dietmar R. Thal (University of Ulm; Charles L. White 3rd (University of Texas); Thomas Wisniewski (New York University); and Randall L. Woltjer (Oregon Health Sciences University).

The study was supported by grants from: the Society for Supporting Research in Experimental Neurology, Vienna, Austria; the National Institutes of Health (P50AG08702, R01 AG037212, P01AG07232, P30 AG028383, P50 AG005138, P50 AG016574, U01 AG006786, R01 AG041851, R01 AG011378, P30 AG028383, P50 AG016574, P01 AG003949, P30 AG012300, P50 AG005146, P50 AG005136, P50 AG025688, P50 AG005138, P01 AG002219, P50 AG005133, P50 AG005681, P01 AG003991, R01 AG038651, P30 AG019610, P30 AG013854, P30 AG036453, P30 AG010124, AG005131, AG184440, AG008051); Medical Research Council (MRC, G0400074); National Institute for Health Research (NIHR, R:CH/ML/0712); the Dunhill Medical Trust (R173/1110); Alzheimer's Research UK (ARUK), and the Alzheimer's Society (AS-PG-2013-011), Louis V. Gerstner, Jr., Foundation; Alzheimer's Association (NIRG-11-204450), FP7 EU Project Develage (No. 278486), Comprehensive Brain Research Network, Grant-in-Aid for Scientific Research (C; 26430060), and Daiwa Health Science Foundation, BrightFocus Foundation, Alzheimer's Association NIRGD-12- 242642, Alzheimer Forschung Initiative (AFI # 13803) (DRT); German Ministry for Research and Education (BMBF) FTLD-Net, Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program of the Mayo Foundation.

Laura Dawahare | EurekAlert!

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>