Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nevada professor discovers new way to calculate body's 'Maximum Weight Limit'

22.09.2009
Most of us are familiar with the term, Body Mass Index, or BMI, as an index to determine healthy body weight. But, calculating BMI involves a complex formula: weight in pounds is multiplied by 703, and then divided by height in inches squared.

Charts or online calculators are then used to show a "healthy weight range" given an individual's height that corresponds to the "healthy range BMI." For example, a BMI chart indicates that a healthy range BMI of 19 to 24 translates to a "healthy weight range" of 120 to 150 pounds for a 5-foot, 6-inch individual.

If this sounds way too complicated to you, you're not alone. George Fernandez, a professor of applied statistics and director of the Center for Research Design and Analysis at the University of Nevada, Reno, set out to give people a simpler way of calculating their healthy weight, and one that wouldn't require charts or online calculators. In addition, he doesn't think the "range" approach sticks in individuals' minds.

"We need a "Maximum Weight Limit, or MWL," he said, "one number that we know we can't go over, just like a speed limit."

So, using SAS software and statistical procedures, he discovered a much simpler way of calculating a Maximum Weight Limit, which closely corresponds to weight recommendations listed on BMI charts. But, you don't need to calculate or know your BMI, nor do you need a chart or online calculator to figure out your Maximum Weight Limit. Fernandez will present his Maximum Weight Limit calculation at the Nevada Public Health Association Conference, 1:30 p.m., Sept. 22 at the University of Nevada, Reno's Joe Crowley Student Union, Room 423.

"It's a very simple calculation that most of us can do in our heads," he explained. For men and women, there is a baseline height and weight. For men, the baseline is 5-feet, 9-inches tall and a Maximum Weight Limit of 175 pounds, meaning that a 5-foot, 9-inch tall man should weigh no more than 175 pounds. For women, the baseline is 5-feet tall and a Maximum Weight Limit of 125 pounds.

"These are nice round numbers that people can easily remember: 5-feet, 9-inches tall, 175 pounds for man; and 5-feet tall, 125 pounds for a woman," explained Fernandez.

From that starting point, you simply calculate how much taller or shorter you are, in inches. Then, if you are man, you add or subtract 5 pounds for every inch you are taller or shorter than 5 feet, 9 inches. So, if you are 5-feet, 11-inches tall, you are 2 inches taller than the baseline of 5 feet, 9 inches. You add 5 pounds for each of those 2 inches, 10 pounds, to the baseline Maximum Weight Limit of 175. So, your Maximum Weight Limit is 185 (175 pounds plus 10 pounds). Women add or subtract 4.5 pounds for each inch they differ from the baseline height of 5-feet tall.

These Maximum Weight Limits correspond very closely to BMIs of 25.5 for men and 24.5 for women. A BMI of 18.5 to 25 BMI is diagnosed as the "healthy range." Fernandez used a slightly lower BMI base for women and a slightly higher one for men because, on average, women have less muscle mass than men. Although some have debated using BMI as a means for calculating healthy weight because it does not take into account factors such as muscle mass, for example, it has been shown to work as a basis for calculating a healthy weight for more than 90 percent of the population and is the most universally used index in weight management programs.

"Now people can calculate their own Maximum Weight Limit, based on the BMI index, but without any calculators or charts," Fernandez said. "And, all they have to remember is that one number, 185 pounds for example, which is easier for most people than retaining a weight range, such as 155 to 185 pounds."

Fernandez also noted that this simple formula could be very useful in medically underserved areas of the world, and for individuals without access to technology and charts.

"Anyone, anywhere can calculate their Maximum Weight Limit if they know their height and this simple formula," he said. "People can calculate this in their heads and remember this."

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of nearly 17,000 students. The University is home to one the country's largest study-abroad programs and the state's medical school, and offers outreach and education programs in all Nevada counties.

Claudene Wharton | EurekAlert!
Further information:
http://www.unr.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>