Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists discover key protein responsible for controlling nerve cell protection

23.04.2012
Findings could lead to new therapies for stroke and epilepsy

A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made by neuroscientists at the University of Bristol and published in Nature Neuroscience and PNAS, could lead to novel new therapies for stroke and epilepsy.

The research team, led by Professor Jeremy Henley and Dr Jack Mellor from Bristol's Medical School, has identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for nerve cells in the brain.

These key SUMO proteins produce subtle responses to the brain's activity levels to regulate the amount of information transmitted by kainate receptors - responsible for communication between nerve cells and whose activation can lead to epileptic seizures and nerve cell death.

Protein function is controlled by altering their structure in processes that can be independent or inter-related including phosphorylation, ubiquitination and SUMOylation. In the present work it is shown that phosphorylation of kainate receptors on its own promotes their activity. However, phosphorylation also facilitates SUMOylation of kainate receptors that reduces their activity. Thus there is a dynamic and delicate interplay between phosphorylation and SUMOylation that regulates kainate receptor function.

This fine balance between phosphorylation and SUMOylation is dependent on brain activity levels where damaging activity that occurs during stroke or epilepsy will enhance SUMOylation and therefore reduce kainate receptor function to protect nerve cells.

Dr Mellor, Senior Lecturer from the University's School of Physiology and Pharmacology, said: "Kainate receptors are a somewhat mysterious but clearly very important group of proteins that are known to be involved in a number of diseases including epilepsy. However, we currently know little about what makes kainate receptors so important. Likewise, we also know that SUMO proteins play an important role in neuroprotection. These findings provide a link between SUMO and kainate receptors that increases our understanding of the processes that nerve cells use to protect themselves from excessive and abnormal activity."

Professor Henley added: "This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. The team has found that by increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation of the brain's nerve cells."

The research follows on from previous findings published in Nature that discovered SUMO proteins target the brain's kainate receptors altering their cellular location.

The research teams comprised academics from the University of Bristol's MRC Centre for Synaptic Plasticity and the Division of Neuroscience in the School of Physiology & Pharmacology and the School of Biochemistry. This work was supported by the Wellcome Trust, Biotechnology and Biological Sciences Research Council (BBSRC), European Research Council (ERC), Medical Research Council (MRC) and EMBO.

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>