Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists discover key protein responsible for controlling nerve cell protection

23.04.2012
Findings could lead to new therapies for stroke and epilepsy

A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made by neuroscientists at the University of Bristol and published in Nature Neuroscience and PNAS, could lead to novel new therapies for stroke and epilepsy.

The research team, led by Professor Jeremy Henley and Dr Jack Mellor from Bristol's Medical School, has identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for nerve cells in the brain.

These key SUMO proteins produce subtle responses to the brain's activity levels to regulate the amount of information transmitted by kainate receptors - responsible for communication between nerve cells and whose activation can lead to epileptic seizures and nerve cell death.

Protein function is controlled by altering their structure in processes that can be independent or inter-related including phosphorylation, ubiquitination and SUMOylation. In the present work it is shown that phosphorylation of kainate receptors on its own promotes their activity. However, phosphorylation also facilitates SUMOylation of kainate receptors that reduces their activity. Thus there is a dynamic and delicate interplay between phosphorylation and SUMOylation that regulates kainate receptor function.

This fine balance between phosphorylation and SUMOylation is dependent on brain activity levels where damaging activity that occurs during stroke or epilepsy will enhance SUMOylation and therefore reduce kainate receptor function to protect nerve cells.

Dr Mellor, Senior Lecturer from the University's School of Physiology and Pharmacology, said: "Kainate receptors are a somewhat mysterious but clearly very important group of proteins that are known to be involved in a number of diseases including epilepsy. However, we currently know little about what makes kainate receptors so important. Likewise, we also know that SUMO proteins play an important role in neuroprotection. These findings provide a link between SUMO and kainate receptors that increases our understanding of the processes that nerve cells use to protect themselves from excessive and abnormal activity."

Professor Henley added: "This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. The team has found that by increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation of the brain's nerve cells."

The research follows on from previous findings published in Nature that discovered SUMO proteins target the brain's kainate receptors altering their cellular location.

The research teams comprised academics from the University of Bristol's MRC Centre for Synaptic Plasticity and the Division of Neuroscience in the School of Physiology & Pharmacology and the School of Biochemistry. This work was supported by the Wellcome Trust, Biotechnology and Biological Sciences Research Council (BBSRC), European Research Council (ERC), Medical Research Council (MRC) and EMBO.

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>