Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neuroscientists discover key protein responsible for controlling nerve cell protection

Findings could lead to new therapies for stroke and epilepsy

A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made by neuroscientists at the University of Bristol and published in Nature Neuroscience and PNAS, could lead to novel new therapies for stroke and epilepsy.

The research team, led by Professor Jeremy Henley and Dr Jack Mellor from Bristol's Medical School, has identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for nerve cells in the brain.

These key SUMO proteins produce subtle responses to the brain's activity levels to regulate the amount of information transmitted by kainate receptors - responsible for communication between nerve cells and whose activation can lead to epileptic seizures and nerve cell death.

Protein function is controlled by altering their structure in processes that can be independent or inter-related including phosphorylation, ubiquitination and SUMOylation. In the present work it is shown that phosphorylation of kainate receptors on its own promotes their activity. However, phosphorylation also facilitates SUMOylation of kainate receptors that reduces their activity. Thus there is a dynamic and delicate interplay between phosphorylation and SUMOylation that regulates kainate receptor function.

This fine balance between phosphorylation and SUMOylation is dependent on brain activity levels where damaging activity that occurs during stroke or epilepsy will enhance SUMOylation and therefore reduce kainate receptor function to protect nerve cells.

Dr Mellor, Senior Lecturer from the University's School of Physiology and Pharmacology, said: "Kainate receptors are a somewhat mysterious but clearly very important group of proteins that are known to be involved in a number of diseases including epilepsy. However, we currently know little about what makes kainate receptors so important. Likewise, we also know that SUMO proteins play an important role in neuroprotection. These findings provide a link between SUMO and kainate receptors that increases our understanding of the processes that nerve cells use to protect themselves from excessive and abnormal activity."

Professor Henley added: "This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. The team has found that by increasing the amount of SUMO attached to kainate receptors – which would reduce communication between the cells – could be a way to treat epilepsy by preventing over-excitation of the brain's nerve cells."

The research follows on from previous findings published in Nature that discovered SUMO proteins target the brain's kainate receptors altering their cellular location.

The research teams comprised academics from the University of Bristol's MRC Centre for Synaptic Plasticity and the Division of Neuroscience in the School of Physiology & Pharmacology and the School of Biochemistry. This work was supported by the Wellcome Trust, Biotechnology and Biological Sciences Research Council (BBSRC), European Research Council (ERC), Medical Research Council (MRC) and EMBO.

Caroline Clancy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>