Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal survival and axonal regrowth obtained in vitro

28.07.2009
While repair of the central nervous system has long been considered impossible, French researchers from Inserm, the CNRS and the UPMC have just developed a strategy that could promote neuronal regeneration after injury. The in vitro studies have just been published in the journal PLoS ONE.

Repair of the central nervous system and restoration of voluntary motor activity through axonal re-growth has long been considered impossible in mammals. Over the last decade, numerous attempts proved disappointing overall. The Inserm team led by Alain Privat has recently shown that an essential component interfering with regeneration was due to the activity of astrocytes, feeder cells that surround neurons.

Normally, the primary role of astrocytes is to supply the nutrients necessary for neuronal function. In the event of spinal injury or lesion, astrocytes synthesize two particular proteins (glial fibrillary acidic protein (GFAP) and vimentin), which isolate the damaged neuron to prevent interference with the operation of the central nervous system.

While the protection is initially useful, in the long run it induces formation of impermeable cicatricial tissue around the neuron, thus constituting impenetrable scarring hostile to axonal regeneration and hence to propagation of nervous impulses. In the event of severe injury, the scarring engenders motor paralysis.

On the basis of the initial findings, the researchers pursued a strategy aimed at developing a therapeutic instrument to block formation of cicatricial tissue. In order to do so, they used gene therapy based on use of interfering RNA. The short RNA sequences, which were made to measure, were inserted into the cytoplasm of cultured astrocytes using a viral therapeutic vector. Once in the cell, the RNA activates mechanisms which block the synthesis of the two proteins secreted by astrocytes and responsible for cicatrix formation. Using that technique, the researchers succeeded in controlling the reaction of astrocytes and when the latter were cultured with neurons, they promoted neuronal survival and triggered axonal growth.

The promising results are now to be validated by in vivo studies. The next stage of the work, currently ongoing, applies the same method to the mouse. The approach may be used in the future in patients having undergone spinal injury.

Find out more:

Source

A novel and efficient gene transfer strategy reduces glial scarring and improves neuronal survival and axonal growth in vitro

Desclaux Mathieu1, Teigell Marisa 2, Amar Lahouari1, Vogel Roland1, Gimenez y Ribotta Minerva3, Privat Alain4 and Mallet Jacques1

1 : Biotechnology and Biotherapy Group, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC) - Hôpital de la Pitié Salpêtrière, Paris F-75013, France.

2 : NEUREVA-inc., Montpellier F-34091 cedex 5, France.

3 : Consejo Superior de Investigationes Cientifícas (CSIC), Universidad Miguel Hernández (UMH), Instituto de Neurociencias de Alicante, Campus de San Juan., Sant Joan D'Alacant Nacional 332, E-03550, España

4 : Institut National de la Santé et de la Recherche Médicale (INSERM) U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Institut des Neurosciences de Montpellier (INM), Université Montpellier 2, Montpellier F-34091 cedex 5, France.

Researcher contacts
Alain Privat
Directeur de recherche Inserm
Unité 583 « physiopathologie et thérapie des déficits sensoriels et moteurs »
Email : privat@univ-montp2.fr
Tel : 04 99 63 60 06
Jacques Mallet
Directeur de recherche CNRS
Centre de recherche de l'institut du cerveau et de la moelle épinière
Email : jacques.mallet@upmc.fr
Tel : 01 42 17 75 30
Press contact
Inserm - Priscille Rivière
Email : presse@inserm.fr
Tel : 01 44 23 60 97

Alain Privat | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>