Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neural balls and strikes: Where categories live in the brain

Brain circuits for visual categorization revealed by new experiments

Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area in the brain where these kinds of visual categories are encoded.

While monkeys played a computer game in which they had to quickly determine the category of a moving visual stimulus, neural recordings revealed brain activity that encoded those categories. Surprisingly, a region of the brain known as the posterior parietal cortex demonstrated faster and stronger category-specific signals than the prefrontal cortex, an area that is typically associated with higher level cognitive functions.

"This is as close as we've come to the source of these abstract signals" said David Freedman, PhD, assistant professor of neurobiology at the University of Chicago. "One of the main points this study suggests is that the parietal cortex is more involved in the categorization process than we had expected."

Organizing the chaos of the surrounding world into categories is one of the brain's key functions. For instance, the brain can almost immediately classify a broad range of four-wheeled vehicles into the general category of "car," allowing a person to quickly take the appropriate action. Neuroscientists such as Freedman and his laboratory team are searching for the brain areas responsible for storing and assigning these categories.

"The number of decisions we make per minute is remarkable," Freedman said. "Understanding that process from a basic physiological perspective is bound to lead to ways to improve the process and to help people make better decisions. This is particularly important for patients suffering from neurological illnesses, brain injuries or mental illness that affect decision making."

Ten years ago, experiments by Freedman and his colleagues found neurons were encoding category signals in the prefrontal cortex (PFC), a region thought to control important mental tasks such as decision making, rule learning and short-term memory. But in subsequent experiments, Freedman found a region of the parietal cortex called the lateral intraparietal area (LIP), thought to be primarily involved in basic visual and spatial processing, also encoded category information.

For the new study, to be published in the journal Nature Neuroscience, Freedman and graduate student Sruthi Swaminathan conducted the first direct comparison of prefrontal cortex and parietal cortex during categorization tasks. Monkeys were taught a simple game in which they classified dots moving in different directions into one of two categories. The subjects were shown two sets of moving dots one second apart, then held or released a joystick based on whether the two stimuli belonged to the same category or different categories.

During the task, scientists recorded neural activity in PFC and LIP. Neurons in both areas changed their activity according to the learned categories; for example, increasing firing for one category and decreasing for the other. However, category-specific neurons in LIP exhibited stronger and faster (by about 70 milliseconds) changes in activity during the task than those recorded from PFC.

"The relative timing of signals in the two brain areas gives us an important clue about their roles in solving the categorization task. Since category information appeared earlier in parietal cortex than prefrontal cortex, it suggests that parietal cortex might be more involved in the visual categorization process, at least during this task," Freedman said.

More evidence for the primacy of parietal cortex was provided by an experiment where scientists threw their subjects a curveball. The monkeys were shown an ambiguous set of moving dots on the border between the two learned categories, then asked to compare them with a second set of non-ambiguous dots — a test with no correct answer. The subjects were required to make a decision about which category the ambiguous stimuli belonged to, and once again LIP neurons corresponded to that decision more closely than PFC.

"During the decision process, parietal cortex activity is not just correlated — it even predicts ahead of time what the monkey will tell you," Swaminathan said. "You can record neuronal activity in parietal cortex and, in many cases, predict with great reliability what the monkey will report."

In humans, the ambiguous stimuli would be similar to an umpire deciding whether a borderline pitch was a ball or a strike — a highly specialized real world example of the visual motion categorization task used in these experiments, Freedman said.

"In a lot of ways, that's the process we hope to understand, this umpire calling balls and strikes," he said. "It's an interesting learned behavior that's highly critical for an individual to perform with great reliability, and it's a spatial categorization with a sharp boundary, so we think it's the same process."

Next, Freedman's laboratory hopes to look at how the brain changes during the category-learning process, examining whether the category signals first arise in the parietal cortex or start in the prefrontal cortex before transferring to visual regions of the brain. The results may help scientists reverse engineer some of the brain's most important tasks in daily life.

"Making effective decisions and evaluating every situation that you're in moment by moment is critical for successful behavior," Freedman said. "We're really interested in what changes occur in the brain to allow you to recognize not just the features of a stimulus, but what it is and what it means."

The paper, "Preferential encoding of visual categories in parietal cortex compared to prefrontal cortex," will be published online Jan. 15 by the journal Nature Neuroscience [doi: 10.1038/nn.3016]. Funding for the study was provided by the National Institutes of Health, the National Science Foundation, the Alfred P. Sloan Foundation and the Brain Research Foundation.

For more news from the University of Chicago Medical Center, follow us on Twitter at @UChicagoMed, or visit our Facebook page at, our research blog at, or our newsroom at

Robert Mitchum | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Make way for the mini flying machines

21.03.2018 | Life Sciences

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>