Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NEDD9 Protein Supports Growth of Aggressive Breast Cancer

06.10.2009
New study provides evidence that absence of the NEDD9 protein limits breast cancer and that NEDD9 could serve as an indicator for aggressive forms of the disease

Researchers at Fox Chase Cancer Center have demonstrated that a protein called NEDD9 may be required for some of the most aggressive forms of breast cancer to grow. Their findings, based on the study of a mouse model of breast cancer, are presented in a recent issue of Cancer Research, available on-line now.

“For the first time, we have been able to present evidence that directly demonstrates reduced levels of NEDD9 in a living animal that limit the appearance of aggressive metastatic breast cancer,” says co-author Erica A. Golemis, PhD, Fox Chase professor and co-leader of the Molecular Translational Medicine Program.

According to Golemis, the protein could serve as a biomarker, a molecule that could be detected to indicate the diagnoses of aggressive forms of breast cancer in the clinic. NEDD9 may also provide a target for some future therapeutic against metastatic cancer, Golemis says.

In 1996, the Golemis laboratory first identified NEDD9, a so-called scaffolding protein that forms part of a complex of molecules just inside the cell membrane. NEDD9 and related proteins collectively act as transmitters, relaying signals from the cell surface to the cell interior to control cancer cell growth and movement. Over the past three years, scientists from laboratories around the world have contributed to a body of evidence showing how excess amounts of the NEDD9 contribute to metastasis in a number of cancers, including melanoma, lung cancer, and glioblastoma.

“One thought is that producing excess NEDD9 gives tumors a selective advantage over other cells,” Golemis says, “so we are trying to determine how NEDD9 might provide that advantage.”

To better understand the role of NEDD9 in breast cancer, the Fox Chase researchers studied a variety of mice, bred by colleagues at the University of Tokyo to lack the NEDD9 gene. These NEDD9 “knockout” mice were then made to turn on an oncogene that induces breast cancer in mice, and compared to normal mice given the same treatment. While the NEDD9 knockout mice developed breast cancers, they did so more slowly and less efficiently than normal mice, and without the activation of the central protein pathways most responsible for cancer growth and metastasis. In fact, mammary tumor growth in the knockout mice showed marked genetic differences from the very moment premalignant lesions were detected, as compared to the normal mice.

“This was the first study able to address the question of what happens in breast cancer if this gene isn't around,” Golemis says. “And the answer is that we see a more moderate cancer development, which alone speaks volumes on the role of the protein in aggressive breast tumors.”

According to Golemis, the emerging body of research on NEDD9 shows that the protein forms an important node in the complex, interwoven pathways that dictate the fate of individual cells. These pathways regulate the entirety of a cell's life, from how select genes are transcribed to form new proteins to how a cell divides or even dies.

“By their nature, cancer cells are evolutionary machines, constantly looking for ways to exploit these vast networks of protein signaling pathways that are an inherent part of cell function,” Golemis says. “The more we understand these pathways, the better we will understand the ways cancer cells evolve to use those pathways, and how to stop them.”

Co-authors in this study include Fox Chase researchers Eugene Izumchenko, Ph.D. Mahendra K. Singh, Ph.D., Ilya G. Serebriiski, Ph.D., Richard Hardy, Ph.D., Joy L. Little, Ph.D., Andres Klein-Szanto, M.D., Denise C. Connolly, PhD, Olga V. Plotnikova, and Nadezhda Tikhymanova.

Funding for this research comes from grants from the National Cancer Institute, National Institute for Health, Israel Cancer Association, Stanley Abersur Research Foundation, Ben-Gurion University of the Negev, Pew Charitable Fund, and the Commonwealth of Pennsylvania.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>