Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NEDD9 Protein Supports Growth of Aggressive Breast Cancer

06.10.2009
New study provides evidence that absence of the NEDD9 protein limits breast cancer and that NEDD9 could serve as an indicator for aggressive forms of the disease

Researchers at Fox Chase Cancer Center have demonstrated that a protein called NEDD9 may be required for some of the most aggressive forms of breast cancer to grow. Their findings, based on the study of a mouse model of breast cancer, are presented in a recent issue of Cancer Research, available on-line now.

“For the first time, we have been able to present evidence that directly demonstrates reduced levels of NEDD9 in a living animal that limit the appearance of aggressive metastatic breast cancer,” says co-author Erica A. Golemis, PhD, Fox Chase professor and co-leader of the Molecular Translational Medicine Program.

According to Golemis, the protein could serve as a biomarker, a molecule that could be detected to indicate the diagnoses of aggressive forms of breast cancer in the clinic. NEDD9 may also provide a target for some future therapeutic against metastatic cancer, Golemis says.

In 1996, the Golemis laboratory first identified NEDD9, a so-called scaffolding protein that forms part of a complex of molecules just inside the cell membrane. NEDD9 and related proteins collectively act as transmitters, relaying signals from the cell surface to the cell interior to control cancer cell growth and movement. Over the past three years, scientists from laboratories around the world have contributed to a body of evidence showing how excess amounts of the NEDD9 contribute to metastasis in a number of cancers, including melanoma, lung cancer, and glioblastoma.

“One thought is that producing excess NEDD9 gives tumors a selective advantage over other cells,” Golemis says, “so we are trying to determine how NEDD9 might provide that advantage.”

To better understand the role of NEDD9 in breast cancer, the Fox Chase researchers studied a variety of mice, bred by colleagues at the University of Tokyo to lack the NEDD9 gene. These NEDD9 “knockout” mice were then made to turn on an oncogene that induces breast cancer in mice, and compared to normal mice given the same treatment. While the NEDD9 knockout mice developed breast cancers, they did so more slowly and less efficiently than normal mice, and without the activation of the central protein pathways most responsible for cancer growth and metastasis. In fact, mammary tumor growth in the knockout mice showed marked genetic differences from the very moment premalignant lesions were detected, as compared to the normal mice.

“This was the first study able to address the question of what happens in breast cancer if this gene isn't around,” Golemis says. “And the answer is that we see a more moderate cancer development, which alone speaks volumes on the role of the protein in aggressive breast tumors.”

According to Golemis, the emerging body of research on NEDD9 shows that the protein forms an important node in the complex, interwoven pathways that dictate the fate of individual cells. These pathways regulate the entirety of a cell's life, from how select genes are transcribed to form new proteins to how a cell divides or even dies.

“By their nature, cancer cells are evolutionary machines, constantly looking for ways to exploit these vast networks of protein signaling pathways that are an inherent part of cell function,” Golemis says. “The more we understand these pathways, the better we will understand the ways cancer cells evolve to use those pathways, and how to stop them.”

Co-authors in this study include Fox Chase researchers Eugene Izumchenko, Ph.D. Mahendra K. Singh, Ph.D., Ilya G. Serebriiski, Ph.D., Richard Hardy, Ph.D., Joy L. Little, Ph.D., Andres Klein-Szanto, M.D., Denise C. Connolly, PhD, Olga V. Plotnikova, and Nadezhda Tikhymanova.

Funding for this research comes from grants from the National Cancer Institute, National Institute for Health, Israel Cancer Association, Stanley Abersur Research Foundation, Ben-Gurion University of the Negev, Pew Charitable Fund, and the Commonwealth of Pennsylvania.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>