Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NEDD9 Protein Supports Growth of Aggressive Breast Cancer

New study provides evidence that absence of the NEDD9 protein limits breast cancer and that NEDD9 could serve as an indicator for aggressive forms of the disease

Researchers at Fox Chase Cancer Center have demonstrated that a protein called NEDD9 may be required for some of the most aggressive forms of breast cancer to grow. Their findings, based on the study of a mouse model of breast cancer, are presented in a recent issue of Cancer Research, available on-line now.

“For the first time, we have been able to present evidence that directly demonstrates reduced levels of NEDD9 in a living animal that limit the appearance of aggressive metastatic breast cancer,” says co-author Erica A. Golemis, PhD, Fox Chase professor and co-leader of the Molecular Translational Medicine Program.

According to Golemis, the protein could serve as a biomarker, a molecule that could be detected to indicate the diagnoses of aggressive forms of breast cancer in the clinic. NEDD9 may also provide a target for some future therapeutic against metastatic cancer, Golemis says.

In 1996, the Golemis laboratory first identified NEDD9, a so-called scaffolding protein that forms part of a complex of molecules just inside the cell membrane. NEDD9 and related proteins collectively act as transmitters, relaying signals from the cell surface to the cell interior to control cancer cell growth and movement. Over the past three years, scientists from laboratories around the world have contributed to a body of evidence showing how excess amounts of the NEDD9 contribute to metastasis in a number of cancers, including melanoma, lung cancer, and glioblastoma.

“One thought is that producing excess NEDD9 gives tumors a selective advantage over other cells,” Golemis says, “so we are trying to determine how NEDD9 might provide that advantage.”

To better understand the role of NEDD9 in breast cancer, the Fox Chase researchers studied a variety of mice, bred by colleagues at the University of Tokyo to lack the NEDD9 gene. These NEDD9 “knockout” mice were then made to turn on an oncogene that induces breast cancer in mice, and compared to normal mice given the same treatment. While the NEDD9 knockout mice developed breast cancers, they did so more slowly and less efficiently than normal mice, and without the activation of the central protein pathways most responsible for cancer growth and metastasis. In fact, mammary tumor growth in the knockout mice showed marked genetic differences from the very moment premalignant lesions were detected, as compared to the normal mice.

“This was the first study able to address the question of what happens in breast cancer if this gene isn't around,” Golemis says. “And the answer is that we see a more moderate cancer development, which alone speaks volumes on the role of the protein in aggressive breast tumors.”

According to Golemis, the emerging body of research on NEDD9 shows that the protein forms an important node in the complex, interwoven pathways that dictate the fate of individual cells. These pathways regulate the entirety of a cell's life, from how select genes are transcribed to form new proteins to how a cell divides or even dies.

“By their nature, cancer cells are evolutionary machines, constantly looking for ways to exploit these vast networks of protein signaling pathways that are an inherent part of cell function,” Golemis says. “The more we understand these pathways, the better we will understand the ways cancer cells evolve to use those pathways, and how to stop them.”

Co-authors in this study include Fox Chase researchers Eugene Izumchenko, Ph.D. Mahendra K. Singh, Ph.D., Ilya G. Serebriiski, Ph.D., Richard Hardy, Ph.D., Joy L. Little, Ph.D., Andres Klein-Szanto, M.D., Denise C. Connolly, PhD, Olga V. Plotnikova, and Nadezhda Tikhymanova.

Funding for this research comes from grants from the National Cancer Institute, National Institute for Health, Israel Cancer Association, Stanley Abersur Research Foundation, Ben-Gurion University of the Negev, Pew Charitable Fund, and the Commonwealth of Pennsylvania.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Greg Lester | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>