Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naturally occurring protection against severe malaria

19.08.2009
New findings by scientists at Instituto Gulbenkian de Ciencia

In a study(*) to be published in the next issue of the Proceedings of the National Academy of Sciences (PNAS), researchers at the Instituto Gulbenkian de Ciência, in Portugal, show that an anti-oxidant drug can protect against the development of deadly forms of malaria. These findings have direct implications for the treatment of this devastating disease, caused by the parasite Plasmodium, and still one of the main causes of death worldwide.

The team lead by Miguel Soares had previously shown that, when Plasmodium multiplies inside red blood cells (the cells that transport oxygen from the lungs into tissues) it causes these cells to burst and to release hemoglobin (the protein to which oxygen binds inside red blood cells) into the blood stream. Once outside the red blood cells, hemoglobin itself can release its heme groups (the four iron centres through which oxygen binds to hemoglobin), which leads to the severe symptoms of malaria and eventually to death.

Now, the researchers found that once infected by Plasmodium, mice express high levels of heme-oxygenase-1 (HO-1), an enzyme that degrades heme and thus protects the infected mice from developing severe forms of malaria. Furthermore, an anti-oxidant drug, N-acetylcysteine (NAC), has the same affect as HO-1, when given to Plasmodium-infected mice.

Miguel Soares explains, 'The antioxidant action of HO-1 is part of the host's natural defence strategy against the malaria parasite. It affords a potent protective effect against malaria but, astonishingly, does not seem to directly affect the parasite. In some cases the reaction of the host against the parasite can lead to death of the infected host. The protective mechanism afforded by HO-1 allows this host response to kill the parasite without compromising its own survival. This finding suggest that there might be alternative therapeutic approaches to treat malaria, which, unlike the current ones would not aim at killing the parasite directly, but rather at strengthening the health status of the host, so that the host could kill parasite and survive. This type therapeutic approach should provide potent protection against severe forms of malaria and thus save lives without favouring the appearance of resistant strains of Plasmodium.

'Moreover, one might be able to apply the same strategy to a range of other infectious diseases and impact on the treatment of not only malaria but a variety of other infectious diseases, a line of research we are actively pursuing at the Instituto Gulbenkian de Ciência.'

This study was supported by Fundação para a Ciência e Tecnologia, Portugal as well as by the European Community, 6th Framework Xenome (LSH-2005-1.2.5-1) and the Gemi Fund (Linde Healthcare).

(*) Elsa Seixa, Rafaella Gozzelino, Ângelo Chora, Ana Ferreira, Gabriela Silva, Rasmus Larsen, Sofia Rebelo, Carmen Penido, R. Neal Smith, António Coutinho and Miguel P Soares (2009) Heme Oxygenase-1 affords protection against non-cerebral forms of severe malaria. PNAS Early Edition.

Ana Godinho | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>