Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasal Congestion: More than Physical Obstruction

17.10.2011
Are you sure your nose is plugged?

Nose feel congested and stuffed up? Scientists from the Monell Center report that the annoying feeling of nasal obstruction is related to the temperature and humidity of inhaled air. The findings suggest that sensory feedback from nasal airflow contributes to the sensation of congestion. This knowledge may help researchers design and test more effective treatments for this familiar symptom of nasal sinus disease.

Nasal sinus disease, usually caused by infection or allergy, is one of the most common medical conditions in the United States, afflicting approximately 33 million people and accounting for over $5.8 billion in healthcare costs annually. Nasal congestion and the associated feeling of obstruction is the symptom that typically causes individuals to seek medical assistance.

However, symptoms of nasal congestion have been difficult to treat effectively because, as many physicians have found, patient reports of congestion often have little relationship to the actual physical obstruction of nasal airflow.

“By establishing that feelings of nasal congestion can be sensory-related, we open doors for more targeted treatment,” said study lead author Kai Zhao, Ph.D., a bioengineer at Monell. “For example, effective treatments may need to include a focus on restoring optimal humidity and temperature in the patient’s nasal airflow.”

In the study, published online in the free-access journal PLoS One, 44 healthy volunteers rated symptoms of nasal congestion after breathing air from three boxes: one containing room air at normal humidity, another containing dry air at room temperature, and the third containing cold air.

The volunteers reported reduced nasal congestion after breathing from both the cold air box and the dry air box as compared with the room air box, with the cold air box decreasing reports of congestion most effectively.

Calculations revealed that humidity also was an important factor, with lower humidity associated with decreased feelings of congestion.

The authors speculate that temperature and humidity interact as air moves through the nasal cavity to influence nasal cooling. It is this cooling that is then detected by ‘cool sensors’ inside the nose to influence the feeling of air flow as being either easy or obstructed.

“Someone in the desert, all other things being equal, should feel less congested than someone in the jungle. In the low humidity of the desert, there is more evaporative cooling inside of the nose, such that the temperature of the nasal passages is lower. This leads to a feeling of greater air flow – and less sensation of obstruction.” said co-author Bruce Bryant, Ph.D., a sensory scientist at Monell.

Future studies will examine patients reporting nasal obstruction to see if the sensory findings reported here can explain their symptoms, and also explore how sensory factors interact with other predictors of nasal obstruction.

Also contributing to the study were Kara Blacker, Yuehao Luo, and Jianbo Jiang, all of Monell. The research was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>