Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoparticles target cardiovascular disease

19.01.2010
Could potentially eliminate need for arterial stents in some patients

Researchers at MIT and Harvard Medical School have built targeted nanoparticles that can cling to artery walls and slowly release medicine, an advance that potentially provides an alternative to drug-releasing stents in some patients with cardiovascular disease.

The particles, dubbed "nanoburrs" because they are coated with tiny protein fragments that allow them to stick to target proteins, can be designed to release their drug payload over several days. They are one of the first such particles that can precisely home in on damaged vascular tissue, says Omid Farokhzad, associate professor at Harvard Medical School and an author of a paper describing the nanoparticles in the Jan. 18 issue of the Proceedings of the National Academy of Sciences.

Farokhzad and MIT Institute Professor Robert Langer, also an author of the paper, have previously developed nanoparticles that seek out and destroy tumors.

The nanoburrs are targeted to a specific structure, known as the basement membrane, which lines the arterial walls and is only exposed when those walls are damaged. Therefore, the nanoburrs could be used to deliver drugs to treat atherosclerosis and other inflammatory cardiovascular diseases. In the current study, the team used paclitaxel, a drug that inhibits cell division and helps prevent the growth of scar tissue that can clog arteries.

"This is a very exciting example of nanotechnology and cell targeting in action that I hope will have broad ramifications," says Langer.

The researchers hope the particles could become a complementary approach that can be used with vascular stents, which are the standard of care for most cases of clogged and damaged arteries, or in lieu of stents in areas not well suited to them, such as near a fork in the artery.

The particles, which are spheres 60 nanometers in diameter, consist of three layers: an inner core containing a complex of the drug and a polymer chain called PLA; a middle layer of soybean lecithin, a fatty material; and an outer coating of a polymer called PEG, which protects the particle as it travels through the bloodstream.

The drug can only be released when it detaches from the PLA polymer chain, which occurs gradually by a reaction called ester hydrolysis. The longer the polymer chain, the longer this process takes, so the researchers can control the timing of the drug's release by altering the chain length. So far, they have achieved drug release over 12 days, in tests in cultured cells.

In tests in rats, the researchers showed that the nanoburrs can be injected intravenously into the tail and still reach their intended target — damaged walls of the left carotid artery. The burrs bound to the damaged walls at twice the rate of nontargeted nanoparticles.

Because the particles can deliver drugs over a longer period of time, and can be injected intravenously, patients would not have to endure repeated and surgically invasive injections directly into the area that requires treatment, says Juliana Chan, a graduate student in Langer's lab and lead author of the paper.

How they did it: The researchers screened a library of short peptide sequences to find one that binds most effectively to molecules on the surface of the basement membrane. They used the most effective one, a seven-amino-acid sequence dubbed C11, to coat the outer layer of their nanoparticles.

Next steps: The team is testing the nanoburrs in rats over a two-week period to determine the most effective dose for treating damaged vascular tissue. The particles may also prove useful in delivering drugs to tumors.

"This technology could have broad applications across other important diseases, including cancer and inflammatory diseases where vascular permeability or vascular damage is commonly observed," says Farokhzad.

Source: "Spatiotemporal controlled delivery of nanoparticles to injured vasculature," Juliana Chan, Liangfang Zhang, Rong Tong, Debuyati Ghosh, Weiwei Gao, Grace Liao, Kai Yuet, David Gray, June-Wha Rhee, Jianjun Cheng, Gershon Golomb, Peter Libby, Robert Langer, Omid Farokhzad. Proceedings of the National Academy of Sciences, week of Jan. 18, 2010.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>