Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoparticles target cardiovascular disease

19.01.2010
Could potentially eliminate need for arterial stents in some patients

Researchers at MIT and Harvard Medical School have built targeted nanoparticles that can cling to artery walls and slowly release medicine, an advance that potentially provides an alternative to drug-releasing stents in some patients with cardiovascular disease.

The particles, dubbed "nanoburrs" because they are coated with tiny protein fragments that allow them to stick to target proteins, can be designed to release their drug payload over several days. They are one of the first such particles that can precisely home in on damaged vascular tissue, says Omid Farokhzad, associate professor at Harvard Medical School and an author of a paper describing the nanoparticles in the Jan. 18 issue of the Proceedings of the National Academy of Sciences.

Farokhzad and MIT Institute Professor Robert Langer, also an author of the paper, have previously developed nanoparticles that seek out and destroy tumors.

The nanoburrs are targeted to a specific structure, known as the basement membrane, which lines the arterial walls and is only exposed when those walls are damaged. Therefore, the nanoburrs could be used to deliver drugs to treat atherosclerosis and other inflammatory cardiovascular diseases. In the current study, the team used paclitaxel, a drug that inhibits cell division and helps prevent the growth of scar tissue that can clog arteries.

"This is a very exciting example of nanotechnology and cell targeting in action that I hope will have broad ramifications," says Langer.

The researchers hope the particles could become a complementary approach that can be used with vascular stents, which are the standard of care for most cases of clogged and damaged arteries, or in lieu of stents in areas not well suited to them, such as near a fork in the artery.

The particles, which are spheres 60 nanometers in diameter, consist of three layers: an inner core containing a complex of the drug and a polymer chain called PLA; a middle layer of soybean lecithin, a fatty material; and an outer coating of a polymer called PEG, which protects the particle as it travels through the bloodstream.

The drug can only be released when it detaches from the PLA polymer chain, which occurs gradually by a reaction called ester hydrolysis. The longer the polymer chain, the longer this process takes, so the researchers can control the timing of the drug's release by altering the chain length. So far, they have achieved drug release over 12 days, in tests in cultured cells.

In tests in rats, the researchers showed that the nanoburrs can be injected intravenously into the tail and still reach their intended target — damaged walls of the left carotid artery. The burrs bound to the damaged walls at twice the rate of nontargeted nanoparticles.

Because the particles can deliver drugs over a longer period of time, and can be injected intravenously, patients would not have to endure repeated and surgically invasive injections directly into the area that requires treatment, says Juliana Chan, a graduate student in Langer's lab and lead author of the paper.

How they did it: The researchers screened a library of short peptide sequences to find one that binds most effectively to molecules on the surface of the basement membrane. They used the most effective one, a seven-amino-acid sequence dubbed C11, to coat the outer layer of their nanoparticles.

Next steps: The team is testing the nanoburrs in rats over a two-week period to determine the most effective dose for treating damaged vascular tissue. The particles may also prove useful in delivering drugs to tumors.

"This technology could have broad applications across other important diseases, including cancer and inflammatory diseases where vascular permeability or vascular damage is commonly observed," says Farokhzad.

Source: "Spatiotemporal controlled delivery of nanoparticles to injured vasculature," Juliana Chan, Liangfang Zhang, Rong Tong, Debuyati Ghosh, Weiwei Gao, Grace Liao, Kai Yuet, David Gray, June-Wha Rhee, Jianjun Cheng, Gershon Golomb, Peter Libby, Robert Langer, Omid Farokhzad. Proceedings of the National Academy of Sciences, week of Jan. 18, 2010.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Discovery points to a new path toward a universal flu vaccine
03.07.2015 | Rockefeller University

nachricht "CCS Telehealth Ostsachsen", Germany's largest telemedicine project, goes online in Dresden
02.07.2015 | Universitätsklinikum Carl Gustav Carus Dresden

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>