Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomedicine: Bringing brighter light into living bodies

19.07.2012
Fluorescent dyes with aggregation-induced emission provide new probes for cancer diagnosis and therapy

Fluorescent nanoparticles loaded with organic light-emitting dyes are expected to transform live-animal imaging technologies. Compared to inorganic quantum dots, these optically stable materials are non-toxic and can easily be modified with functional groups, making them ideal when targeting specific tissues in the body. Unfortunately, traditional dyes have been known to aggregate and lose their emission intensity when incorporated in nanoparticles at high concentration.

To overcome this problem, a team of researchers led by Bin Liu and Ben Zhong Tang at the A*STAR Institute of Materials Research and Engineering have now designed a family of dyes with enhanced fluorescence upon aggregation.

At the heart of the traditional dyes is a planar chromophore called triphenylamine-modified dicyanomethylene, which emits red light in dilute solutions but fluoresces weakly when aggregated. “The close vicinity of the chromophores induces fluorescence quenching due to non-radiative pathways,” says Liu.

Liu, Tang and their team reversed this phenomenon by attaching propeller-shaped tetraphenylethene pendants to each extremity of the chromophore. Contrary to planar compounds, the shape of the propellers prevents strong stacking interactions between chromophores, blocking the aggregation-caused quenching process. In addition, the physical confinement prevents these propellers from rotating freely, enabling light emission.

The team formulated the dyes using a bovine serum albumin (BSA) matrix — a biocompatible and clinically used polymer — and evaluated their performance as probes. Experimental characterization showed that the wavelength of the emission maximum of the nanoparticles remained unchanged upon encapsulation and that the intensity of the emitted light increased with the dye loading.

Live imaging of breast cancer cells revealed that the nanoparticles displayed more intense and homogeneously distributed red fluorescence in the cytoplasms (see image) than free aggregates, suggesting that BSA boosted the cellular uptake of the dyes. The team also found that the nanoparticles were optically stable in biological media and displayed good biocompatibility.

The researchers intravenously injected the nanoparticles in liver-tumor-bearing mice for in vivo imaging studies. They found that unlike free aggregates, the nanoparticles selectively accumulated in the tumor, clearly highlighting the cancerous tissue in the animals. “This demonstration underscores new research opportunities to explore similar diagnostic probes with potential clinical applications,” says Liu.

The team is currently investigating near-infrared emissive biological probes for targeted in vivo tumor imaging applications. The nanoparticles can also be utilized to understand cancer metastasis or the fate of transplanted stem cells. “These probes are promising in multimodal imaging applications through integration with magnetic resonance imaging or nuclear imaging reagents,” says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References:
Qin, W. et al. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Advanced Functional Materials 22, 771–779 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>