Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-tech makes medicine greener

04.11.2011
Researchers at the University of Copenhagen are behind the development of a new method that will make it possible to develop drugs faster and greener. This will lead to cheaper medicine for consumers.

Over the last 5 years the Bionano Group at the Nano-Science Center and the Department of Neuroscience and Pharmacology at the University of Copenhagen has been working hard to characterise and test how molecules react, combine together and form larger molecules, which can be used in the development of new medicine.

The researchers' breakthrough, as published in the prestigious journal Nature Nanotechnology, is that they are able to work with reactions that take place in very small volumes, namely 10-19 liters. This is a billion times smaller than anyone has managed to work with before. Even more intriguing is the ability to do so in parallel for millions of samples on a single chip.

"We are the first in the world to demonstrate that it is possible to mix and work with such small amounts of material. When we reach such unprecedented small volumes we can test many more reactions in parallel and that is the basis for the development of new drugs. In addition, we have reduced our use of materials considerably and that is beneficial to both the environment and the pocketbook," says professor Dimitrios Stamou, who predicts that the method will be of interest to industry because it makes it possible to investigate drugs faster, cheaper and greener.

The technique makes production greener

The team of professor Stamou reached such small scales because they are working with self-assembling systems. Self-assembling systems, such as molecules, are biological systems that organise themselves without outside control.

This occurs because some molecules fit with certain other molecules so well that they assemble together into a common structure. Self-assembly is a fundamental principle in nature and occurs at all the different size scales, ranging from the formation of solar systems to the folding of DNA.

"By using nanotechnology we have been able to observe how specific self-assembling systems, such as biomolecules, react to different substances and have used this knowledge to develop the method. The self-assembling systems consist entirely of biological materials such as fat and as a result do not impact the environment, in contrast to the materials commonly used in industry today (e.g. plastics, silicon and metals). This and the dramatic reduction in the amount of used materials makes the technique more environment friendly, ‘greener'," explains Dimitrios Stamou, who is part of the Synthetic Biology Center and director of the Lundbeck Center Biomembranes in Nanomedicine.

Dimitrios Stamou | EurekAlert!
Further information:
http://www.sund.ku.dk

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>