Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Devices that Cross Blood-Brain Barrier Open Door to Treatment of Cerebral Palsy, Other Neurologic Disorders

24.04.2012
Studies in rabbits hold promise for people

A team of scientists from Johns Hopkins and elsewhere have developed nano-devices that successfully cross the brain-blood barrier and deliver a drug that tames brain-damaging inflammation in rabbits with cerebral palsy.

A report on the experiments, conducted at Wayne State University in collaboration with the Perinatology Research Branch of the National Institute of Child Health and Human Development, before the lead and senior investigators moved to Johns Hopkins, is published in the April 18 issue of Science Translational Medicine.

For the study, researchers used tiny, manmade molecules laced with N-acetyl-L-cysteine (NAC), an anti-inflammatory drug used as antidote in acetaminophen poisoning. The researchers precision-targeted brain cells gone awry to halt brain injury. In doing so they improved the animals’ neurologic function and motor skills.

The new approach holds therapeutic potential for a wide variety of neurologic disorders in humans that stem from neuro-inflammation, including Alzheimer’s disease, stroke, autism and multiple sclerosis, the investigators say.

The scientists caution that the findings are a long way from human application, but that the simplicity and versatility of the drug-delivery system make it an ideal candidate for translation into clinical use.

“In crossing the blood-brain barrier and targeting the cells responsible for inflammation and brain injury, we believe we may have opened the door to new therapies for a wide-variety of neurologic disorders that stem from an inflammatory response gone haywire,” says lead investigator Sujatha Kannan, M.D., now a pediatric critical-care specialist at Johns Hopkins Children’s Center.

Cerebral palsy (CP), estimated to occur in three out of 1,000 newborns, is a lifelong, often devastating disorder caused by infection or reduced oxygen to the brain before, during or immediately after birth. Current therapies focus on assuaging symptoms and improving quality of life, but can neither reduce nor reverse neurologic damage and loss of motor function.

Neuro-inflammatory damage occurs when two types of brain cells called microglia and astrocytes — normally deployed to protect the brain during infection and inflammation — actually damage it by going into overdrive and destroying healthy brain cells along with damaged ones.

Directly treating cells in the brain has long proven difficult because of the biological and physiological systems that have evolved to protect the brain from blood-borne infections. The quest to deliver the drug to the brain also involved developing a technique to get past the brain-blood barrier, spare healthy brain cells and deliver the anti-inflammatory drug exclusively inside the rogue cells.

To do all this, the scientists used a globular, tree-like synthetic molecule, known as a dendrimer. Its size — 2,000 times smaller than a red blood cell — renders it fit for travel across the blood-brain barrier. Moreover, the dendrimer’s tree-like structure allowed scientists to attach to it molecules of an anti-inflammatory NAC. The researchers tagged the drug-laced dendrimers with fluorescent tracers to monitor their journey to the brain and injected them into rabbits with cerebral palsy six hours after birth. Another group of newborn rabbits received an injection of NAC only.

Not only did the drug-loaded dendrimers make their way inside the brain but, once there, were rapidly swallowed by the overactive astrocytes and microglia.

“These rampant inflammatory cells, in effect, gobbled up their own poison,” Kannan says.

“The dendrimers not only successfully crossed the blood-brain barrier but, perhaps more importantly, zeroed in on the very cells responsible for neuro-inflammation, releasing the therapeutic drug directly into them,” says senior investigator Rangaramanujam Kannan, Ph.D., of the Center for Nanomedicine at the Johns Hopkins Wilmer Eye Institute.

Animals treated with dendrimer-borne NAC showed marked improvement in motor control and coordination within five days after birth, nearly reaching the motor skill of healthy rabbits. By comparison, rabbits treated with dendrimer-free NAC showed minimal, if any, improvement, even at doses 10 times higher than the dendrimer-borne version. Animals treated with the dendrimer-delivered drug also showed better muscle tone and less stiffness in the hind leg muscles, both hallmarks of CP.

Brain tissue analysis revealed that rabbits treated with dendrimer-borne NAC had notably fewer “bad” microglia — the inflammatory cells responsible for brain damage — as well as markedly lower levels of other inflammation markers. They also had better preserved myelin, the protein that sheaths nerves and is stripped or damaged in CP and other neurologic disorders. And even though CP is marked by neuron death in certain brain centers, animals who received dendrimer-borne NAC had higher number of neurons in the brain regions responsible for coordination and motor control, compared with untreated animals and those treated with NAC only.

The findings suggest that the treatment not only reduces inflammation in the cells, but may also prevent cell damage and cell death, the researchers said. The Kannans, who are married, say they plan to follow some treated animals into adulthood to ensure the improvements are not temporary.

A separate study, led by Rangaramanujam Kannan, has already demonstrated the therapeutic benefits of this approach in reversing retinal damage in rats with macular degeneration, the vision-robbing eye disorder that affects millions of older adults.

Other investigators involved in the research were Hui Dai, Raghavendra Navath, Bindu Balakrishnan, Amar Jyoti, James Janisse and Roberto Romero.

Jyoti and Balakrishnan are now at Hopkins and part of the ongoing research.

The study was funded by the Perinatology Research Branch of the Eunice Kennedy Shriver National Institute of Child Health & Human Development.

Founded in 1912 as the children's hospital at The Johns Hopkins Hospital, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's will celebrate its 100th anniversary and move to a new home in 2012. For more information, please visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org
http://www.hopkinschildrens.org/Nano-Devices-that-Cross-Blood-Brain-Barrier-Open-Door-to-Treatment-of-Cerebral-Palsy.aspx
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>